MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem9 Structured version   Visualization version   GIF version

Theorem vdwlem9 15693
Description: Lemma for vdw 15698. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
vdwlem9.m (𝜑𝑀 ∈ ℕ)
vdwlem9.w (𝜑𝑊 ∈ ℕ)
vdwlem9.g (𝜑 → ∀𝑔 ∈ (𝑅𝑚 (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
vdwlem9.v (𝜑𝑉 ∈ ℕ)
vdwlem9.a (𝜑 → ∀𝑓 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉))𝐾 MonoAP 𝑓)
vdwlem9.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem9.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
Assertion
Ref Expression
vdwlem9 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
Distinct variable groups:   𝑔,𝑛,𝑥,𝑦,𝜑   𝑥,𝑓,𝑦,𝑉   𝑓,𝑊,𝑥,𝑦   𝑓,𝑔,𝐹,𝑥,𝑦   𝑓,𝑛,𝑠,𝐾,𝑔,𝑥,𝑦   𝑓,𝑀,𝑔,𝑛,𝑥,𝑦   𝑅,𝑓,𝑔,𝑛,𝑠,𝑥,𝑦   𝑔,𝐻,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑠)   𝐹(𝑛,𝑠)   𝐻(𝑓,𝑛,𝑠)   𝑀(𝑠)   𝑉(𝑔,𝑛,𝑠)   𝑊(𝑔,𝑛,𝑠)

Proof of Theorem vdwlem9
Dummy variables 𝑎 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem9.v . . . . 5 (𝜑𝑉 ∈ ℕ)
2 vdwlem9.w . . . . 5 (𝜑𝑊 ∈ ℕ)
3 vdw.r . . . . 5 (𝜑𝑅 ∈ Fin)
4 vdwlem9.h . . . . 5 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
5 vdwlem9.f . . . . 5 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
61, 2, 3, 4, 5vdwlem4 15688 . . . 4 (𝜑𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)))
7 ovex 6678 . . . . 5 (𝑅𝑚 (1...𝑊)) ∈ V
8 ovex 6678 . . . . 5 (1...𝑉) ∈ V
97, 8elmap 7886 . . . 4 (𝐹 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉)) ↔ 𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)))
106, 9sylibr 224 . . 3 (𝜑𝐹 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉)))
11 vdwlem9.a . . 3 (𝜑 → ∀𝑓 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉))𝐾 MonoAP 𝑓)
12 breq2 4657 . . . 4 (𝑓 = 𝐹 → (𝐾 MonoAP 𝑓𝐾 MonoAP 𝐹))
1312rspcv 3305 . . 3 (𝐹 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉)) → (∀𝑓 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉))𝐾 MonoAP 𝑓𝐾 MonoAP 𝐹))
1410, 11, 13sylc 65 . 2 (𝜑𝐾 MonoAP 𝐹)
15 vdwlem9.k . . . . . 6 (𝜑𝐾 ∈ (ℤ‘2))
16 eluz2nn 11726 . . . . . 6 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
1715, 16syl 17 . . . . 5 (𝜑𝐾 ∈ ℕ)
1817nnnn0d 11351 . . . 4 (𝜑𝐾 ∈ ℕ0)
198, 18, 6vdwmc 15682 . . 3 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑔𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔})))
20 vdwlem9.g . . . . . . . . 9 (𝜑 → ∀𝑔 ∈ (𝑅𝑚 (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
2120adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ∀𝑔 ∈ (𝑅𝑚 (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
22 simprr 796 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))
2317adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ ℕ)
24 simprll 802 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℕ)
25 simprlr 803 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑑 ∈ ℕ)
26 vdwapid1 15679 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑))
2723, 24, 25, 26syl3anc 1326 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑))
2822, 27sseldd 3604 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (𝐹 “ {𝑔}))
29 ffn 6045 . . . . . . . . . . . . . 14 (𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)) → 𝐹 Fn (1...𝑉))
306, 29syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 Fn (1...𝑉))
3130adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐹 Fn (1...𝑉))
32 fniniseg 6338 . . . . . . . . . . . 12 (𝐹 Fn (1...𝑉) → (𝑎 ∈ (𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔)))
3331, 32syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 ∈ (𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔)))
3428, 33mpbid 222 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔))
3534simprd 479 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) = 𝑔)
366adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)))
3734simpld 475 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (1...𝑉))
3836, 37ffvelrnd 6360 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) ∈ (𝑅𝑚 (1...𝑊)))
3935, 38eqeltrrd 2702 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑔 ∈ (𝑅𝑚 (1...𝑊)))
40 rsp 2929 . . . . . . . 8 (∀𝑔 ∈ (𝑅𝑚 (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (𝑔 ∈ (𝑅𝑚 (1...𝑊)) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
4121, 39, 40sylc 65 . . . . . . 7 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
421adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℕ)
432adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℕ)
443adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑅 ∈ Fin)
454adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
46 vdwlem9.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
4746adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑀 ∈ ℕ)
48 ovex 6678 . . . . . . . . . . . 12 (1...𝑊) ∈ V
49 elmapg 7870 . . . . . . . . . . . 12 ((𝑅 ∈ Fin ∧ (1...𝑊) ∈ V) → (𝑔 ∈ (𝑅𝑚 (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅))
5044, 48, 49sylancl 694 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑔 ∈ (𝑅𝑚 (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅))
5139, 50mpbid 222 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑔:(1...𝑊)⟶𝑅)
5215adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ (ℤ‘2))
5342, 43, 44, 45, 5, 47, 51, 52, 24, 25, 22vdwlem7 15691 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
54 olc 399 . . . . . . . . . 10 ((𝐾 + 1) MonoAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔))
5554a1i 11 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
5653, 55jaod 395 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
57 oveq1 6657 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑥 − 1) = (𝑎 − 1))
5857oveq1d 6665 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝑥 − 1) + 𝑉) = ((𝑎 − 1) + 𝑉))
5958oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · ((𝑎 − 1) + 𝑉)))
6059oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))
6160fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
6261mpteq2dv 4745 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6348mptex 6486 . . . . . . . . . . . . . 14 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ∈ V
6462, 5, 63fvmpt 6282 . . . . . . . . . . . . 13 (𝑎 ∈ (1...𝑉) → (𝐹𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6537, 64syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6665, 35eqtr3d 2658 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = 𝑔)
6766breq2d 4665 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ↔ (𝐾 + 1) MonoAP 𝑔))
6818adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ ℕ0)
69 peano2nn0 11333 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
7068, 69syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐾 + 1) ∈ ℕ0)
71 nnm1nn0 11334 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ → (𝑎 − 1) ∈ ℕ0)
7224, 71syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 − 1) ∈ ℕ0)
73 nn0nnaddcl 11324 . . . . . . . . . . . . 13 (((𝑎 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝑎 − 1) + 𝑉) ∈ ℕ)
7472, 42, 73syl2anc 693 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℕ)
7543, 74nnmulcld 11068 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · ((𝑎 − 1) + 𝑉)) ∈ ℕ)
7624, 42nnaddcld 11067 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℕ)
7743, 76nnmulcld 11068 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℕ)
7877nnzd 11481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℤ)
79 2nn 11185 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
80 nnmulcl 11043 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (2 · 𝑉) ∈ ℕ)
8179, 1, 80sylancr 695 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑉) ∈ ℕ)
822, 81nnmulcld 11068 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℕ)
8382nnzd 11481 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℤ)
8483adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ ℤ)
8524nnred 11035 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℝ)
8642nnred 11035 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℝ)
87 elfzle2 12345 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...𝑉) → 𝑎𝑉)
8837, 87syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎𝑉)
8985, 86, 86, 88leadd1dd 10641 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (𝑉 + 𝑉))
9042nncnd 11036 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℂ)
91902timesd 11275 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (2 · 𝑉) = (𝑉 + 𝑉))
9289, 91breqtrrd 4681 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (2 · 𝑉))
9376nnred 11035 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℝ)
9481nnred 11035 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑉) ∈ ℝ)
9594adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (2 · 𝑉) ∈ ℝ)
9643nnred 11035 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℝ)
9743nngt0d 11064 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 0 < 𝑊)
98 lemul2 10876 . . . . . . . . . . . . . . 15 (((𝑎 + 𝑉) ∈ ℝ ∧ (2 · 𝑉) ∈ ℝ ∧ (𝑊 ∈ ℝ ∧ 0 < 𝑊)) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
9993, 95, 96, 97, 98syl112anc 1330 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
10092, 99mpbid 222 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))
101 eluz2 11693 . . . . . . . . . . . . 13 ((𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 · (𝑎 + 𝑉))) ↔ ((𝑊 · (𝑎 + 𝑉)) ∈ ℤ ∧ (𝑊 · (2 · 𝑉)) ∈ ℤ ∧ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
10278, 84, 100, 101syl3anbrc 1246 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 · (𝑎 + 𝑉))))
10343nncnd 11036 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℂ)
104 1cnd 10056 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 1 ∈ ℂ)
10572nn0cnd 11353 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 − 1) ∈ ℂ)
106105, 90addcld 10059 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℂ)
107103, 104, 106adddid 10064 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉))))
108104, 105, 90addassd 10062 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (1 + ((𝑎 − 1) + 𝑉)))
109 ax-1cn 9994 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
11024nncnd 11036 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℂ)
111 pncan3 10289 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (1 + (𝑎 − 1)) = 𝑎)
112109, 110, 111sylancr 695 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (1 + (𝑎 − 1)) = 𝑎)
113112oveq1d 6665 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (𝑎 + 𝑉))
114108, 113eqtr3d 2658 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (1 + ((𝑎 − 1) + 𝑉)) = (𝑎 + 𝑉))
115114oveq2d 6666 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = (𝑊 · (𝑎 + 𝑉)))
116103mulid1d 10057 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · 1) = 𝑊)
117116oveq1d 6665 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉))) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))
118107, 115, 1173eqtr3d 2664 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))
119118fveq2d 6195 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (ℤ‘(𝑊 · (𝑎 + 𝑉))) = (ℤ‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
120102, 119eleqtrd 2703 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
121 oveq1 6657 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))) = (𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉))))
122121fveq2d 6195 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))) = (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
123122cbvmptv 4750 . . . . . . . . . . 11 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = (𝑧 ∈ (1...𝑊) ↦ (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
12444, 70, 43, 75, 45, 120, 123vdwlem2 15686 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) → (𝐾 + 1) MonoAP 𝐻))
12567, 124sylbird 250 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (𝐾 + 1) MonoAP 𝐻))
126125orim2d 885 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
12756, 126syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
12841, 127mpd 15 . . . . . 6 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
129128expr 643 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
130129rexlimdvva 3038 . . . 4 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
131130exlimdv 1861 . . 3 (𝜑 → (∃𝑔𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
13219, 131sylbid 230 . 2 (𝜑 → (𝐾 MonoAP 𝐹 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
13314, 132mpd 15 1 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  {csn 4177  cop 4183   class class class wbr 4653  cmpt 4729  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  APcvdwa 15669   MonoAP cvdwm 15670   PolyAP cvdwp 15671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-hash 13118  df-vdwap 15672  df-vdwmc 15673  df-vdwpc 15674
This theorem is referenced by:  vdwlem10  15694
  Copyright terms: Public domain W3C validator