MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2 Structured version   Visualization version   Unicode version

Theorem wlkiswwlks2 26761
Description: A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlks2  |-  ( G  e. USPGraph  ->  ( P  e.  (WWalks `  G )  ->  E. f  f (Walks `  G ) P ) )
Distinct variable groups:    f, G    P, f

Proof of Theorem wlkiswwlks2
Dummy variables  i  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
21wwlkbp 26732 . . 3  |-  ( P  e.  (WWalks `  G
)  ->  ( G  e.  _V  /\  P  e. Word 
(Vtx `  G )
) )
3 eqid 2622 . . . . 5  |-  (Edg `  G )  =  (Edg
`  G )
41, 3iswwlks 26728 . . . 4  |-  ( P  e.  (WWalks `  G
)  <->  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )
5 ovex 6678 . . . . . . . . . . . . . . 15  |-  ( 0..^ ( ( # `  P
)  -  1 ) )  e.  _V
6 mptexg 6484 . . . . . . . . . . . . . . 15  |-  ( ( 0..^ ( ( # `  P )  -  1 ) )  e.  _V  ->  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' (iEdg `  G ) `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) )  e. 
_V )
75, 6mp1i 13 . . . . . . . . . . . . . 14  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G )
)  /\  G  e. USPGraph  ) )  ->  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  e.  _V )
8 simprr 796 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G )
)  /\  G  e. USPGraph  ) )  ->  G  e. USPGraph  )
9 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G )
)  /\  G  e. USPGraph  ) )  ->  P  e. Word  (Vtx
`  G ) )
10 hashge1 13178 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P  e. Word  (Vtx `  G )  /\  P  =/=  (/) )  ->  1  <_  ( # `  P
) )
1110ancoms 469 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  ->  1  <_  (
# `  P )
)
1211adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G )
)  /\  G  e. USPGraph  ) )  ->  1  <_  (
# `  P )
)
138, 9, 123jca 1242 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G )
)  /\  G  e. USPGraph  ) )  ->  ( G  e. USPGraph 
/\  P  e. Word  (Vtx `  G )  /\  1  <_  ( # `  P
) ) )
1413adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  G  e. USPGraph  ) )  /\  f  =  ( x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) )  -> 
( G  e. USPGraph  /\  P  e. Word  (Vtx `  G )  /\  1  <_  ( # `  P ) ) )
15 edgval 25941 . . . . . . . . . . . . . . . . . . . 20  |-  (Edg `  G )  =  ran  (iEdg `  G )
1615a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  G  e. USPGraph  ) )  /\  f  =  ( x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) )  -> 
(Edg `  G )  =  ran  (iEdg `  G
) )
1716eleq2d 2687 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  G  e. USPGraph  ) )  /\  f  =  ( x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) )  -> 
( { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G )  <->  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  (iEdg `  G )
) )
1817ralbidv 2986 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  G  e. USPGraph  ) )  /\  f  =  ( x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  (iEdg `  G ) ) )
1918biimpd 219 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  G  e. USPGraph  ) )  /\  f  =  ( x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  (iEdg `  G ) ) )
20 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  =  ( x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )
21 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  (iEdg `  G )  =  (iEdg `  G )
2220, 21wlkiswwlks2lem6 26760 . . . . . . . . . . . . . . . 16  |-  ( ( G  e. USPGraph  /\  P  e. Word 
(Vtx `  G )  /\  1  <_  ( # `  P ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  (iEdg `  G )  ->  (
( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' (iEdg `  G ) `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) )  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) ( (iEdg `  G
) `  ( (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) `  i
) )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) } ) ) )
2314, 19, 22sylsyld 61 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  G  e. USPGraph  ) )  /\  f  =  ( x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  (
( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' (iEdg `  G ) `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) )  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) ( (iEdg `  G
) `  ( (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) `  i
) )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) } ) ) )
24 eleq1 2689 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  ->  (
f  e. Word  dom  (iEdg `  G )  <->  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  e. Word  dom  (iEdg `  G ) ) )
25 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  ->  ( # `
 f )  =  ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) )
2625oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  ->  (
0 ... ( # `  f
) )  =  ( 0 ... ( # `  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' (iEdg `  G ) `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ) ) ) )
2726feq2d 6031 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  ->  ( P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  <->  P :
( 0 ... ( # `
 ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) --> (Vtx `  G )
) )
2825oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  ->  (
0..^ ( # `  f
) )  =  ( 0..^ ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) )
29 fveq1 6190 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  ->  (
f `  i )  =  ( ( x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) `  i
) )
3029fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  ->  (
(iEdg `  G ) `  ( f `  i
) )  =  ( (iEdg `  G ) `  ( ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) `  i
) ) )
3130eqeq1d 2624 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  ->  (
( (iEdg `  G
) `  ( f `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  ( (iEdg `  G ) `  (
( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' (iEdg `  G ) `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ) `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
3228, 31raleqbidv 3152 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  ->  ( A. i  e.  (
0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  A. i  e.  ( 0..^ ( # `  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' (iEdg `  G ) `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ) ) ) ( (iEdg `  G ) `  (
( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' (iEdg `  G ) `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) ) `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
3324, 27, 323anbi123d 1399 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  ->  (
( f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  <-> 
( ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) ( (iEdg `  G
) `  ( (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) `  i
) )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) } ) ) )
3433imbi2d 330 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) 
|->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) )  ->  (
( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  (
f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  <->  ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  (
( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' (iEdg `  G ) `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) )  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) ( (iEdg `  G
) `  ( (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) `  i
) )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) } ) ) ) )
3534adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  G  e. USPGraph  ) )  /\  f  =  ( x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) )  -> 
( ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  (
f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  <->  ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  (
( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' (iEdg `  G ) `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } ) )  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) ) ) ( (iEdg `  G
) `  ( (
x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) `  i
) )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) } ) ) ) )
3623, 35mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  G  e. USPGraph  ) )  /\  f  =  ( x  e.  ( 0..^ ( ( # `  P
)  -  1 ) )  |->  ( `' (iEdg `  G ) `  {
( P `  x
) ,  ( P `
 ( x  + 
1 ) ) } ) ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  (
f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
377, 36spcimedv 3292 . . . . . . . . . . . . 13  |-  ( ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  /\  ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G )
)  /\  G  e. USPGraph  ) )  ->  ( A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G )  ->  E. f ( f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
3837ex 450 . . . . . . . . . . . 12  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  ->  ( (
( G  e.  _V  /\  P  e. Word  (Vtx `  G ) )  /\  G  e. USPGraph  )  ->  ( A. i  e.  (
0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  E. f ( f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) ) )
3938com23 86 . . . . . . . . . . 11  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )
)  ->  ( A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G )  -> 
( ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G )
)  /\  G  e. USPGraph  )  ->  E. f ( f  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) ) )
40393impia 1261 . . . . . . . . . 10  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  ->  ( ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G
) )  /\  G  e. USPGraph  )  ->  E. f
( f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
4140expd 452 . . . . . . . . 9  |-  ( ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  ->  ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G )
)  ->  ( G  e. USPGraph 
->  E. f ( f  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) ) )
4241impcom 446 . . . . . . . 8  |-  ( ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G ) )  /\  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  ( G  e. USPGraph 
->  E. f ( f  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
4342imp 445 . . . . . . 7  |-  ( ( ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )  /\  G  e. USPGraph  )  ->  E. f ( f  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
44 uspgrupgr 26071 . . . . . . . . . 10  |-  ( G  e. USPGraph  ->  G  e. UPGraph  )
451, 21upgriswlk 26537 . . . . . . . . . 10  |-  ( G  e. UPGraph  ->  ( f (Walks `  G ) P  <->  ( f  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
4644, 45syl 17 . . . . . . . . 9  |-  ( G  e. USPGraph  ->  ( f (Walks `  G ) P  <->  ( f  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
4746adantl 482 . . . . . . . 8  |-  ( ( ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )  /\  G  e. USPGraph  )  ->  ( f (Walks `  G ) P  <->  ( f  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 f ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
4847exbidv 1850 . . . . . . 7  |-  ( ( ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )  /\  G  e. USPGraph  )  ->  ( E. f 
f (Walks `  G
) P  <->  E. f
( f  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  f
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  G ) `  (
f `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
4943, 48mpbird 247 . . . . . 6  |-  ( ( ( ( G  e. 
_V  /\  P  e. Word  (Vtx
`  G ) )  /\  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )  /\  G  e. USPGraph  )  ->  E. f  f (Walks `  G ) P )
5049ex 450 . . . . 5  |-  ( ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G ) )  /\  ( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  ( G  e. USPGraph 
->  E. f  f (Walks `  G ) P ) )
5150ex 450 . . . 4  |-  ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G
) )  ->  (
( P  =/=  (/)  /\  P  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  ->  ( G  e. USPGraph  ->  E. f  f (Walks `  G ) P ) ) )
524, 51syl5bi 232 . . 3  |-  ( ( G  e.  _V  /\  P  e. Word  (Vtx `  G
) )  ->  ( P  e.  (WWalks `  G
)  ->  ( G  e. USPGraph 
->  E. f  f (Walks `  G ) P ) ) )
532, 52mpcom 38 . 2  |-  ( P  e.  (WWalks `  G
)  ->  ( G  e. USPGraph 
->  E. f  f (Walks `  G ) P ) )
5453com12 32 1  |-  ( G  e. USPGraph  ->  ( P  e.  (WWalks `  G )  ->  E. f  f (Walks `  G ) P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UPGraph cupgr 25975   USPGraph cuspgr 26043  Walkscwlks 26492  WWalkscwwlks 26717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-wlks 26495  df-wwlks 26722
This theorem is referenced by:  wlkiswwlks  26762  wlklnwwlkln2  26769
  Copyright terms: Public domain W3C validator