Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngmmgm Structured version   Visualization version   Unicode version

Theorem 2zrngmmgm 41946
Description: R is a (multiplicative) magma. (Contributed by AV, 11-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e  |-  E  =  { z  e.  ZZ  |  E. x  e.  ZZ  z  =  ( 2  x.  x ) }
2zrngbas.r  |-  R  =  (flds  E )
2zrngmmgm.1  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
2zrngmmgm  |-  M  e. Mgm
Distinct variable groups:    x, z, R    x, E, z
Allowed substitution hints:    M( x, z)

Proof of Theorem 2zrngmmgm
Dummy variables  a 
b  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2626 . . . . . 6  |-  ( z  =  a  ->  (
z  =  ( 2  x.  x )  <->  a  =  ( 2  x.  x
) ) )
21rexbidv 3052 . . . . 5  |-  ( z  =  a  ->  ( E. x  e.  ZZ  z  =  ( 2  x.  x )  <->  E. x  e.  ZZ  a  =  ( 2  x.  x ) ) )
3 2zrng.e . . . . 5  |-  E  =  { z  e.  ZZ  |  E. x  e.  ZZ  z  =  ( 2  x.  x ) }
42, 3elrab2 3366 . . . 4  |-  ( a  e.  E  <->  ( a  e.  ZZ  /\  E. x  e.  ZZ  a  =  ( 2  x.  x ) ) )
5 eqeq1 2626 . . . . . 6  |-  ( z  =  b  ->  (
z  =  ( 2  x.  x )  <->  b  =  ( 2  x.  x
) ) )
65rexbidv 3052 . . . . 5  |-  ( z  =  b  ->  ( E. x  e.  ZZ  z  =  ( 2  x.  x )  <->  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )
76, 3elrab2 3366 . . . 4  |-  ( b  e.  E  <->  ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )
8 zmulcl 11426 . . . . . 6  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  x.  b
)  e.  ZZ )
98ad2ant2r 783 . . . . 5  |-  ( ( ( a  e.  ZZ  /\ 
E. x  e.  ZZ  a  =  ( 2  x.  x ) )  /\  ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  (
a  x.  b )  e.  ZZ )
10 nfv 1843 . . . . . . . . 9  |-  F/ x  a  e.  ZZ
11 nfv 1843 . . . . . . . . . . 11  |-  F/ x  b  e.  ZZ
12 nfre1 3005 . . . . . . . . . . 11  |-  F/ x E. x  e.  ZZ  b  =  ( 2  x.  x )
1311, 12nfan 1828 . . . . . . . . . 10  |-  F/ x
( b  e.  ZZ  /\ 
E. x  e.  ZZ  b  =  ( 2  x.  x ) )
14 nfv 1843 . . . . . . . . . 10  |-  F/ x E. y  e.  ZZ  ( a  x.  b
)  =  ( 2  x.  y )
1513, 14nfim 1825 . . . . . . . . 9  |-  F/ x
( ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) )  ->  E. y  e.  ZZ  ( a  x.  b )  =  ( 2  x.  y ) )
1610, 15nfim 1825 . . . . . . . 8  |-  F/ x
( a  e.  ZZ  ->  ( ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) )  ->  E. y  e.  ZZ  ( a  x.  b )  =  ( 2  x.  y ) ) )
17 simpll 790 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  a  =  ( 2  x.  x ) )  /\  a  e.  ZZ )  ->  x  e.  ZZ )
18 simpl 473 . . . . . . . . . . 11  |-  ( ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) )  -> 
b  e.  ZZ )
19 zmulcl 11426 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  b  e.  ZZ )  ->  ( x  x.  b
)  e.  ZZ )
2017, 18, 19syl2an 494 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  a  =  ( 2  x.  x
) )  /\  a  e.  ZZ )  /\  (
b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  ( x  x.  b )  e.  ZZ )
21 oveq2 6658 . . . . . . . . . . . 12  |-  ( y  =  ( x  x.  b )  ->  (
2  x.  y )  =  ( 2  x.  ( x  x.  b
) ) )
2221eqeq2d 2632 . . . . . . . . . . 11  |-  ( y  =  ( x  x.  b )  ->  (
( a  x.  b
)  =  ( 2  x.  y )  <->  ( a  x.  b )  =  ( 2  x.  ( x  x.  b ) ) ) )
2322adantl 482 . . . . . . . . . 10  |-  ( ( ( ( ( x  e.  ZZ  /\  a  =  ( 2  x.  x ) )  /\  a  e.  ZZ )  /\  ( b  e.  ZZ  /\ 
E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  /\  y  =  ( x  x.  b
) )  ->  (
( a  x.  b
)  =  ( 2  x.  y )  <->  ( a  x.  b )  =  ( 2  x.  ( x  x.  b ) ) ) )
24 oveq1 6657 . . . . . . . . . . . 12  |-  ( a  =  ( 2  x.  x )  ->  (
a  x.  b )  =  ( ( 2  x.  x )  x.  b ) )
2524ad3antlr 767 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  a  =  ( 2  x.  x
) )  /\  a  e.  ZZ )  /\  (
b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  ( a  x.  b )  =  ( ( 2  x.  x
)  x.  b ) )
26 2cnd 11093 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  a  =  ( 2  x.  x
) )  /\  a  e.  ZZ )  /\  (
b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  2  e.  CC )
27 zcn 11382 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  x  e.  CC )
2827ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  a  =  ( 2  x.  x
) )  /\  a  e.  ZZ )  /\  (
b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  x  e.  CC )
29 zcn 11382 . . . . . . . . . . . . . 14  |-  ( b  e.  ZZ  ->  b  e.  CC )
3029adantr 481 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) )  -> 
b  e.  CC )
3130adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  a  =  ( 2  x.  x
) )  /\  a  e.  ZZ )  /\  (
b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  b  e.  CC )
3226, 28, 31mulassd 10063 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  a  =  ( 2  x.  x
) )  /\  a  e.  ZZ )  /\  (
b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  ( ( 2  x.  x )  x.  b )  =  ( 2  x.  ( x  x.  b ) ) )
3325, 32eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  a  =  ( 2  x.  x
) )  /\  a  e.  ZZ )  /\  (
b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  ( a  x.  b )  =  ( 2  x.  ( x  x.  b ) ) )
3420, 23, 33rspcedvd 3317 . . . . . . . . 9  |-  ( ( ( ( x  e.  ZZ  /\  a  =  ( 2  x.  x
) )  /\  a  e.  ZZ )  /\  (
b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  E. y  e.  ZZ  ( a  x.  b
)  =  ( 2  x.  y ) )
3534exp41 638 . . . . . . . 8  |-  ( x  e.  ZZ  ->  (
a  =  ( 2  x.  x )  -> 
( a  e.  ZZ  ->  ( ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) )  ->  E. y  e.  ZZ  ( a  x.  b )  =  ( 2  x.  y ) ) ) ) )
3616, 35rexlimi 3024 . . . . . . 7  |-  ( E. x  e.  ZZ  a  =  ( 2  x.  x )  ->  (
a  e.  ZZ  ->  ( ( b  e.  ZZ  /\ 
E. x  e.  ZZ  b  =  ( 2  x.  x ) )  ->  E. y  e.  ZZ  ( a  x.  b
)  =  ( 2  x.  y ) ) ) )
3736impcom 446 . . . . . 6  |-  ( ( a  e.  ZZ  /\  E. x  e.  ZZ  a  =  ( 2  x.  x ) )  -> 
( ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) )  ->  E. y  e.  ZZ  ( a  x.  b )  =  ( 2  x.  y ) ) )
3837imp 445 . . . . 5  |-  ( ( ( a  e.  ZZ  /\ 
E. x  e.  ZZ  a  =  ( 2  x.  x ) )  /\  ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  E. y  e.  ZZ  ( a  x.  b )  =  ( 2  x.  y ) )
39 eqeq1 2626 . . . . . . . 8  |-  ( z  =  ( a  x.  b )  ->  (
z  =  ( 2  x.  x )  <->  ( a  x.  b )  =  ( 2  x.  x ) ) )
4039rexbidv 3052 . . . . . . 7  |-  ( z  =  ( a  x.  b )  ->  ( E. x  e.  ZZ  z  =  ( 2  x.  x )  <->  E. x  e.  ZZ  ( a  x.  b )  =  ( 2  x.  x ) ) )
4140, 3elrab2 3366 . . . . . 6  |-  ( ( a  x.  b )  e.  E  <->  ( (
a  x.  b )  e.  ZZ  /\  E. x  e.  ZZ  (
a  x.  b )  =  ( 2  x.  x ) ) )
42 oveq2 6658 . . . . . . . . 9  |-  ( x  =  y  ->  (
2  x.  x )  =  ( 2  x.  y ) )
4342eqeq2d 2632 . . . . . . . 8  |-  ( x  =  y  ->  (
( a  x.  b
)  =  ( 2  x.  x )  <->  ( a  x.  b )  =  ( 2  x.  y ) ) )
4443cbvrexv 3172 . . . . . . 7  |-  ( E. x  e.  ZZ  (
a  x.  b )  =  ( 2  x.  x )  <->  E. y  e.  ZZ  ( a  x.  b )  =  ( 2  x.  y ) )
4544anbi2i 730 . . . . . 6  |-  ( ( ( a  x.  b
)  e.  ZZ  /\  E. x  e.  ZZ  (
a  x.  b )  =  ( 2  x.  x ) )  <->  ( (
a  x.  b )  e.  ZZ  /\  E. y  e.  ZZ  (
a  x.  b )  =  ( 2  x.  y ) ) )
4641, 45bitri 264 . . . . 5  |-  ( ( a  x.  b )  e.  E  <->  ( (
a  x.  b )  e.  ZZ  /\  E. y  e.  ZZ  (
a  x.  b )  =  ( 2  x.  y ) ) )
479, 38, 46sylanbrc 698 . . . 4  |-  ( ( ( a  e.  ZZ  /\ 
E. x  e.  ZZ  a  =  ( 2  x.  x ) )  /\  ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  (
a  x.  b )  e.  E )
484, 7, 47syl2anb 496 . . 3  |-  ( ( a  e.  E  /\  b  e.  E )  ->  ( a  x.  b
)  e.  E )
4948rgen2a 2977 . 2  |-  A. a  e.  E  A. b  e.  E  ( a  x.  b )  e.  E
5030even 41931 . . 3  |-  0  e.  E
51 2zrngmmgm.1 . . . . 5  |-  M  =  (mulGrp `  R )
52 2zrngbas.r . . . . . 6  |-  R  =  (flds  E )
533, 522zrngbas 41936 . . . . 5  |-  E  =  ( Base `  R
)
5451, 53mgpbas 18495 . . . 4  |-  E  =  ( Base `  M
)
553, 522zrngmul 41945 . . . . 5  |-  x.  =  ( .r `  R )
5651, 55mgpplusg 18493 . . . 4  |-  x.  =  ( +g  `  M )
5754, 56ismgmn0 17244 . . 3  |-  ( 0  e.  E  ->  ( M  e. Mgm  <->  A. a  e.  E  A. b  e.  E  ( a  x.  b
)  e.  E ) )
5850, 57ax-mp 5 . 2  |-  ( M  e. Mgm 
<-> 
A. a  e.  E  A. b  e.  E  ( a  x.  b
)  e.  E )
5949, 58mpbir 221 1  |-  M  e. Mgm
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941   2c2 11070   ZZcz 11377   ↾s cress 15858  Mgmcmgm 17240  mulGrpcmgp 18489  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-mgm 17242  df-mgp 18490  df-cnfld 19747
This theorem is referenced by:  2zrngmsgrp  41947
  Copyright terms: Public domain W3C validator