MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephexp1 Structured version   Visualization version   Unicode version

Theorem alephexp1 9401
Description: An exponentiation law for alephs. Lemma 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephexp1  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ( 2o  ^m  ( aleph `  B )
) )

Proof of Theorem alephexp1
StepHypRef Expression
1 alephon 8892 . . . 4  |-  ( aleph `  B )  e.  On
2 onenon 8775 . . . 4  |-  ( (
aleph `  B )  e.  On  ->  ( aleph `  B )  e.  dom  card )
31, 2mp1i 13 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( aleph `  B )  e.  dom  card )
4 fvex 6201 . . . 4  |-  ( aleph `  B )  e.  _V
5 simplr 792 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  B  e.  On )
6 alephgeom 8905 . . . . 5  |-  ( B  e.  On  <->  om  C_  ( aleph `  B ) )
75, 6sylib 208 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  om  C_  ( aleph `  B ) )
8 ssdomg 8001 . . . 4  |-  ( (
aleph `  B )  e. 
_V  ->  ( om  C_  ( aleph `  B )  ->  om 
~<_  ( aleph `  B )
) )
94, 7, 8mpsyl 68 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  om  ~<_  ( aleph `  B ) )
10 fvex 6201 . . . 4  |-  ( aleph `  A )  e.  _V
11 ordom 7074 . . . . . 6  |-  Ord  om
12 2onn 7720 . . . . . 6  |-  2o  e.  om
13 ordelss 5739 . . . . . 6  |-  ( ( Ord  om  /\  2o  e.  om )  ->  2o  C_ 
om )
1411, 12, 13mp2an 708 . . . . 5  |-  2o  C_  om
15 simpll 790 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  A  e.  On )
16 alephgeom 8905 . . . . . 6  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
1715, 16sylib 208 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  om  C_  ( aleph `  A ) )
1814, 17syl5ss 3614 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  2o  C_  ( aleph `  A ) )
19 ssdomg 8001 . . . 4  |-  ( (
aleph `  A )  e. 
_V  ->  ( 2o  C_  ( aleph `  A )  ->  2o  ~<_  ( aleph `  A
) ) )
2010, 18, 19mpsyl 68 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  2o  ~<_  ( aleph `  A ) )
21 alephord3 8901 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  (
aleph `  A )  C_  ( aleph `  B )
) )
22 ssdomg 8001 . . . . . . 7  |-  ( (
aleph `  B )  e. 
_V  ->  ( ( aleph `  A )  C_  ( aleph `  B )  -> 
( aleph `  A )  ~<_  ( aleph `  B )
) )
234, 22ax-mp 5 . . . . . 6  |-  ( (
aleph `  A )  C_  ( aleph `  B )  ->  ( aleph `  A )  ~<_  ( aleph `  B )
)
2421, 23syl6bi 243 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  ->  ( aleph `  A )  ~<_  ( aleph `  B )
) )
2524imp 445 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( aleph `  A )  ~<_  ( aleph `  B ) )
264canth2 8113 . . . . 5  |-  ( aleph `  B )  ~<  ~P ( aleph `  B )
27 sdomdom 7983 . . . . 5  |-  ( (
aleph `  B )  ~<  ~P ( aleph `  B )  ->  ( aleph `  B )  ~<_  ~P ( aleph `  B )
)
2826, 27ax-mp 5 . . . 4  |-  ( aleph `  B )  ~<_  ~P ( aleph `  B )
29 domtr 8009 . . . 4  |-  ( ( ( aleph `  A )  ~<_  ( aleph `  B )  /\  ( aleph `  B )  ~<_  ~P ( aleph `  B )
)  ->  ( aleph `  A )  ~<_  ~P ( aleph `  B ) )
3025, 28, 29sylancl 694 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( aleph `  A )  ~<_  ~P ( aleph `  B ) )
31 mappwen 8935 . . 3  |-  ( ( ( ( aleph `  B
)  e.  dom  card  /\ 
om  ~<_  ( aleph `  B
) )  /\  ( 2o 
~<_  ( aleph `  A )  /\  ( aleph `  A )  ~<_  ~P ( aleph `  B )
) )  ->  (
( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ~P ( aleph `  B ) )
323, 9, 20, 30, 31syl22anc 1327 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ~P ( aleph `  B ) )
334pw2en 8067 . . 3  |-  ~P ( aleph `  B )  ~~  ( 2o  ^m  ( aleph `  B ) )
34 enen2 8101 . . 3  |-  ( ~P ( aleph `  B )  ~~  ( 2o  ^m  ( aleph `  B ) )  ->  ( ( (
aleph `  A )  ^m  ( aleph `  B )
)  ~~  ~P ( aleph `  B )  <->  ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ( 2o  ^m  ( aleph `  B )
) ) )
3533, 34ax-mp 5 . 2  |-  ( ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ~P ( aleph `  B )  <->  ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ( 2o  ^m  ( aleph `  B )
) )
3632, 35sylib 208 1  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ( 2o  ^m  ( aleph `  B )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114   Ord word 5722   Oncon0 5723   ` cfv 5888  (class class class)co 6650   omcom 7065   2oc2o 7554    ^m cmap 7857    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761   alephcale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by:  alephexp2  9403
  Copyright terms: Public domain W3C validator