MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscm Structured version   Visualization version   Unicode version

Theorem assamulgscm 19350
Description: Exponentiation of a scalar multiplication in an associative algebra:  ( a  .x.  X ) ^ N  =  ( a ^ N )  .X.  ( X ^ N ). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v  |-  V  =  ( Base `  W
)
assamulgscm.f  |-  F  =  (Scalar `  W )
assamulgscm.b  |-  B  =  ( Base `  F
)
assamulgscm.s  |-  .x.  =  ( .s `  W )
assamulgscm.g  |-  G  =  (mulGrp `  F )
assamulgscm.p  |-  .^  =  (.g
`  G )
assamulgscm.h  |-  H  =  (mulGrp `  W )
assamulgscm.e  |-  E  =  (.g `  H )
Assertion
Ref Expression
assamulgscm  |-  ( ( W  e. AssAlg  /\  ( N  e.  NN0  /\  A  e.  B  /\  X  e.  V ) )  -> 
( N E ( A  .x.  X ) )  =  ( ( N  .^  A )  .x.  ( N E X ) ) )

Proof of Theorem assamulgscm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . . 7  |-  ( x  =  0  ->  (
x E ( A 
.x.  X ) )  =  ( 0 E ( A  .x.  X
) ) )
2 oveq1 6657 . . . . . . . 8  |-  ( x  =  0  ->  (
x  .^  A )  =  ( 0  .^  A ) )
3 oveq1 6657 . . . . . . . 8  |-  ( x  =  0  ->  (
x E X )  =  ( 0 E X ) )
42, 3oveq12d 6668 . . . . . . 7  |-  ( x  =  0  ->  (
( x  .^  A
)  .x.  ( x E X ) )  =  ( ( 0  .^  A )  .x.  (
0 E X ) ) )
51, 4eqeq12d 2637 . . . . . 6  |-  ( x  =  0  ->  (
( x E ( A  .x.  X ) )  =  ( ( x  .^  A )  .x.  ( x E X ) )  <->  ( 0 E ( A  .x.  X ) )  =  ( ( 0  .^  A )  .x.  (
0 E X ) ) ) )
65imbi2d 330 . . . . 5  |-  ( x  =  0  ->  (
( ( ( A  e.  B  /\  X  e.  V )  /\  W  e. AssAlg )  ->  ( x E ( A  .x.  X ) )  =  ( ( x  .^  A )  .x.  (
x E X ) ) )  <->  ( (
( A  e.  B  /\  X  e.  V
)  /\  W  e. AssAlg )  ->  ( 0 E ( A  .x.  X
) )  =  ( ( 0  .^  A
)  .x.  ( 0 E X ) ) ) ) )
7 oveq1 6657 . . . . . . 7  |-  ( x  =  y  ->  (
x E ( A 
.x.  X ) )  =  ( y E ( A  .x.  X
) ) )
8 oveq1 6657 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .^  A )  =  ( y  .^  A ) )
9 oveq1 6657 . . . . . . . 8  |-  ( x  =  y  ->  (
x E X )  =  ( y E X ) )
108, 9oveq12d 6668 . . . . . . 7  |-  ( x  =  y  ->  (
( x  .^  A
)  .x.  ( x E X ) )  =  ( ( y  .^  A )  .x.  (
y E X ) ) )
117, 10eqeq12d 2637 . . . . . 6  |-  ( x  =  y  ->  (
( x E ( A  .x.  X ) )  =  ( ( x  .^  A )  .x.  ( x E X ) )  <->  ( y E ( A  .x.  X ) )  =  ( ( y  .^  A )  .x.  (
y E X ) ) ) )
1211imbi2d 330 . . . . 5  |-  ( x  =  y  ->  (
( ( ( A  e.  B  /\  X  e.  V )  /\  W  e. AssAlg )  ->  ( x E ( A  .x.  X ) )  =  ( ( x  .^  A )  .x.  (
x E X ) ) )  <->  ( (
( A  e.  B  /\  X  e.  V
)  /\  W  e. AssAlg )  ->  ( y E ( A  .x.  X
) )  =  ( ( y  .^  A
)  .x.  ( y E X ) ) ) ) )
13 oveq1 6657 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x E ( A 
.x.  X ) )  =  ( ( y  +  1 ) E ( A  .x.  X
) ) )
14 oveq1 6657 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  (
x  .^  A )  =  ( ( y  +  1 )  .^  A ) )
15 oveq1 6657 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  (
x E X )  =  ( ( y  +  1 ) E X ) )
1614, 15oveq12d 6668 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
( x  .^  A
)  .x.  ( x E X ) )  =  ( ( ( y  +  1 )  .^  A )  .x.  (
( y  +  1 ) E X ) ) )
1713, 16eqeq12d 2637 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( x E ( A  .x.  X ) )  =  ( ( x  .^  A )  .x.  ( x E X ) )  <->  ( (
y  +  1 ) E ( A  .x.  X ) )  =  ( ( ( y  +  1 )  .^  A )  .x.  (
( y  +  1 ) E X ) ) ) )
1817imbi2d 330 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( ( A  e.  B  /\  X  e.  V )  /\  W  e. AssAlg )  ->  ( x E ( A  .x.  X ) )  =  ( ( x  .^  A )  .x.  (
x E X ) ) )  <->  ( (
( A  e.  B  /\  X  e.  V
)  /\  W  e. AssAlg )  ->  ( ( y  +  1 ) E ( A  .x.  X
) )  =  ( ( ( y  +  1 )  .^  A
)  .x.  ( (
y  +  1 ) E X ) ) ) ) )
19 oveq1 6657 . . . . . . 7  |-  ( x  =  N  ->  (
x E ( A 
.x.  X ) )  =  ( N E ( A  .x.  X
) ) )
20 oveq1 6657 . . . . . . . 8  |-  ( x  =  N  ->  (
x  .^  A )  =  ( N  .^  A ) )
21 oveq1 6657 . . . . . . . 8  |-  ( x  =  N  ->  (
x E X )  =  ( N E X ) )
2220, 21oveq12d 6668 . . . . . . 7  |-  ( x  =  N  ->  (
( x  .^  A
)  .x.  ( x E X ) )  =  ( ( N  .^  A )  .x.  ( N E X ) ) )
2319, 22eqeq12d 2637 . . . . . 6  |-  ( x  =  N  ->  (
( x E ( A  .x.  X ) )  =  ( ( x  .^  A )  .x.  ( x E X ) )  <->  ( N E ( A  .x.  X ) )  =  ( ( N  .^  A )  .x.  ( N E X ) ) ) )
2423imbi2d 330 . . . . 5  |-  ( x  =  N  ->  (
( ( ( A  e.  B  /\  X  e.  V )  /\  W  e. AssAlg )  ->  ( x E ( A  .x.  X ) )  =  ( ( x  .^  A )  .x.  (
x E X ) ) )  <->  ( (
( A  e.  B  /\  X  e.  V
)  /\  W  e. AssAlg )  ->  ( N E ( A  .x.  X
) )  =  ( ( N  .^  A
)  .x.  ( N E X ) ) ) ) )
25 assamulgscm.v . . . . . 6  |-  V  =  ( Base `  W
)
26 assamulgscm.f . . . . . 6  |-  F  =  (Scalar `  W )
27 assamulgscm.b . . . . . 6  |-  B  =  ( Base `  F
)
28 assamulgscm.s . . . . . 6  |-  .x.  =  ( .s `  W )
29 assamulgscm.g . . . . . 6  |-  G  =  (mulGrp `  F )
30 assamulgscm.p . . . . . 6  |-  .^  =  (.g
`  G )
31 assamulgscm.h . . . . . 6  |-  H  =  (mulGrp `  W )
32 assamulgscm.e . . . . . 6  |-  E  =  (.g `  H )
3325, 26, 27, 28, 29, 30, 31, 32assamulgscmlem1 19348 . . . . 5  |-  ( ( ( A  e.  B  /\  X  e.  V
)  /\  W  e. AssAlg )  ->  ( 0 E ( A  .x.  X
) )  =  ( ( 0  .^  A
)  .x.  ( 0 E X ) ) )
3425, 26, 27, 28, 29, 30, 31, 32assamulgscmlem2 19349 . . . . . 6  |-  ( y  e.  NN0  ->  ( ( ( A  e.  B  /\  X  e.  V
)  /\  W  e. AssAlg )  ->  ( ( y E ( A  .x.  X ) )  =  ( ( y  .^  A )  .x.  (
y E X ) )  ->  ( (
y  +  1 ) E ( A  .x.  X ) )  =  ( ( ( y  +  1 )  .^  A )  .x.  (
( y  +  1 ) E X ) ) ) ) )
3534a2d 29 . . . . 5  |-  ( y  e.  NN0  ->  ( ( ( ( A  e.  B  /\  X  e.  V )  /\  W  e. AssAlg )  ->  ( y E ( A  .x.  X ) )  =  ( ( y  .^  A )  .x.  (
y E X ) ) )  ->  (
( ( A  e.  B  /\  X  e.  V )  /\  W  e. AssAlg )  ->  ( (
y  +  1 ) E ( A  .x.  X ) )  =  ( ( ( y  +  1 )  .^  A )  .x.  (
( y  +  1 ) E X ) ) ) ) )
366, 12, 18, 24, 33, 35nn0ind 11472 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( A  e.  B  /\  X  e.  V
)  /\  W  e. AssAlg )  ->  ( N E ( A  .x.  X
) )  =  ( ( N  .^  A
)  .x.  ( N E X ) ) ) )
3736exp4c 636 . . 3  |-  ( N  e.  NN0  ->  ( A  e.  B  ->  ( X  e.  V  ->  ( W  e. AssAlg  ->  ( N E ( A  .x.  X ) )  =  ( ( N  .^  A )  .x.  ( N E X ) ) ) ) ) )
38373imp 1256 . 2  |-  ( ( N  e.  NN0  /\  A  e.  B  /\  X  e.  V )  ->  ( W  e. AssAlg  ->  ( N E ( A 
.x.  X ) )  =  ( ( N 
.^  A )  .x.  ( N E X ) ) ) )
3938impcom 446 1  |-  ( ( W  e. AssAlg  /\  ( N  e.  NN0  /\  A  e.  B  /\  X  e.  V ) )  -> 
( N E ( A  .x.  X ) )  =  ( ( N  .^  A )  .x.  ( N E X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292   Basecbs 15857  Scalarcsca 15944   .scvsca 15945  .gcmg 17540  mulGrpcmgp 18489  AssAlgcasa 19309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mulg 17541  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-lmod 18865  df-assa 19312
This theorem is referenced by:  lply1binomsc  19677
  Copyright terms: Public domain W3C validator