Proof of Theorem lply1binomsc
Step | Hyp | Ref
| Expression |
1 | | lply1binomsc.s |
. . . . . 6
algSc   |
2 | | eqid 2622 |
. . . . . 6
Scalar  Scalar   |
3 | | crngring 18558 |
. . . . . . . 8

  |
4 | | cply1binom.p |
. . . . . . . . 9
Poly1   |
5 | 4 | ply1ring 19618 |
. . . . . . . 8

  |
6 | 3, 5 | syl 17 |
. . . . . . 7

  |
7 | 6 | 3ad2ant1 1082 |
. . . . . 6
     |
8 | 4 | ply1lmod 19622 |
. . . . . . . 8

  |
9 | 3, 8 | syl 17 |
. . . . . . 7

  |
10 | 9 | 3ad2ant1 1082 |
. . . . . 6
     |
11 | | eqid 2622 |
. . . . . 6
   Scalar      Scalar    |
12 | | eqid 2622 |
. . . . . 6
         |
13 | 1, 2, 7, 10, 11, 12 | asclf 19337 |
. . . . 5
        Scalar           |
14 | | lply1binomsc.k |
. . . . . . 7
     |
15 | 4 | ply1sca 19623 |
. . . . . . . . 9

Scalar    |
16 | 15 | 3ad2ant1 1082 |
. . . . . . . 8
   Scalar    |
17 | 16 | fveq2d 6195 |
. . . . . . 7
          Scalar     |
18 | 14, 17 | syl5eq 2668 |
. . . . . 6
      Scalar     |
19 | 18 | feq2d 6031 |
. . . . 5
           
     Scalar            |
20 | 13, 19 | mpbird 247 |
. . . 4
             |
21 | | simp3 1063 |
. . . 4
     |
22 | 20, 21 | ffvelrnd 6360 |
. . 3
             |
23 | | cply1binom.x |
. . . 4
var1   |
24 | | cply1binom.a |
. . . 4
    |
25 | | cply1binom.m |
. . . 4
     |
26 | | cply1binom.t |
. . . 4
.g   |
27 | | cply1binom.g |
. . . 4
mulGrp   |
28 | | cply1binom.e |
. . . 4
.g   |
29 | 4, 23, 24, 25, 26, 27, 28, 12 | lply1binom 19676 |
. . 3
                    g                 
        |
30 | 22, 29 | syld3an3 1371 |
. 2
            g                 
        |
31 | 4 | ply1assa 19569 |
. . . . . . . . . . 11

AssAlg |
32 | 31 | 3ad2ant1 1082 |
. . . . . . . . . 10
   AssAlg |
33 | 32 | adantr 481 |
. . . . . . . . 9
  

     AssAlg |
34 | | fznn0sub 12373 |
. . . . . . . . . 10
     
   |
35 | 34 | adantl 482 |
. . . . . . . . 9
  

         |
36 | 15 | fveq2d 6195 |
. . . . . . . . . . . . . 14

       Scalar     |
37 | 14, 36 | syl5eq 2668 |
. . . . . . . . . . . . 13

   Scalar     |
38 | 37 | eleq2d 2687 |
. . . . . . . . . . . 12


   Scalar      |
39 | 38 | biimpa 501 |
. . . . . . . . . . 11
      Scalar     |
40 | 39 | 3adant2 1080 |
. . . . . . . . . 10
      Scalar     |
41 | 40 | adantr 481 |
. . . . . . . . 9
  

        Scalar     |
42 | | eqid 2622 |
. . . . . . . . . . . . 13
         |
43 | 12, 42 | ringidcl 18568 |
. . . . . . . . . . . 12

          |
44 | 6, 43 | syl 17 |
. . . . . . . . . . 11

          |
45 | 44 | 3ad2ant1 1082 |
. . . . . . . . . 10
             |
46 | 45 | adantr 481 |
. . . . . . . . 9
  

               |
47 | | eqid 2622 |
. . . . . . . . . 10
         |
48 | | eqid 2622 |
. . . . . . . . . 10
mulGrp Scalar   mulGrp Scalar    |
49 | | eqid 2622 |
. . . . . . . . . 10
.g mulGrp Scalar    .g mulGrp Scalar     |
50 | 12, 2, 11, 47, 48, 49, 27, 28 | assamulgscm 19350 |
. . . . . . . . 9
  AssAlg
  
   Scalar  
            
                  .g mulGrp Scalar              
        |
51 | 33, 35, 41, 46, 50 | syl13anc 1328 |
. . . . . . . 8
  

                          .g mulGrp Scalar              
        |
52 | | lply1binomsc.e |
. . . . . . . . . . . . . 14
.g   |
53 | | lply1binomsc.h |
. . . . . . . . . . . . . . . 16
mulGrp   |
54 | 15 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16

mulGrp  mulGrp Scalar     |
55 | 53, 54 | syl5eq 2668 |
. . . . . . . . . . . . . . 15

mulGrp Scalar     |
56 | 55 | fveq2d 6195 |
. . . . . . . . . . . . . 14

.g  .g mulGrp Scalar      |
57 | 52, 56 | syl5eq 2668 |
. . . . . . . . . . . . 13

.g mulGrp Scalar      |
58 | 57 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
   .g mulGrp Scalar      |
59 | 58 | adantr 481 |
. . . . . . . . . . 11
  

     .g mulGrp Scalar      |
60 | 59 | eqcomd 2628 |
. . . . . . . . . 10
  

     .g mulGrp Scalar      |
61 | 60 | oveqd 6667 |
. . . . . . . . 9
  

         .g mulGrp Scalar              |
62 | 27 | ringmgp 18553 |
. . . . . . . . . . . 12

  |
63 | 6, 62 | syl 17 |
. . . . . . . . . . 11

  |
64 | 63 | 3ad2ant1 1082 |
. . . . . . . . . 10
     |
65 | 27, 12 | mgpbas 18495 |
. . . . . . . . . . 11
         |
66 | 27, 42 | ringidval 18503 |
. . . . . . . . . . 11
         |
67 | 65, 28, 66 | mulgnn0z 17567 |
. . . . . . . . . 10
  
                |
68 | 64, 34, 67 | syl2an 494 |
. . . . . . . . 9
  

                   |
69 | 61, 68 | oveq12d 6668 |
. . . . . . . 8
  

          .g mulGrp Scalar              
                          |
70 | 51, 69 | eqtrd 2656 |
. . . . . . 7
  

                                         |
71 | 1, 2, 11, 47, 42 | asclval 19335 |
. . . . . . . . 9
    Scalar                     |
72 | 41, 71 | syl 17 |
. . . . . . . 8
  

                       |
73 | 72 | oveq2d 6666 |
. . . . . . 7
  

                               |
74 | 53 | ringmgp 18553 |
. . . . . . . . . . . . 13

  |
75 | 3, 74 | syl 17 |
. . . . . . . . . . . 12

  |
76 | 75 | 3ad2ant1 1082 |
. . . . . . . . . . 11
     |
77 | 76 | adantr 481 |
. . . . . . . . . 10
  

       |
78 | | simpr 477 |
. . . . . . . . . . . . 13
     |
79 | 53, 14 | mgpbas 18495 |
. . . . . . . . . . . . 13
     |
80 | 78, 79 | syl6eleq 2711 |
. . . . . . . . . . . 12
         |
81 | 80 | 3adant2 1080 |
. . . . . . . . . . 11
         |
82 | 81 | adantr 481 |
. . . . . . . . . 10
  

           |
83 | | eqid 2622 |
. . . . . . . . . . 11
         |
84 | 83, 52 | mulgnn0cl 17558 |
. . . . . . . . . 10
  

                 |
85 | 77, 35, 82, 84 | syl3anc 1326 |
. . . . . . . . 9
  

                 |
86 | 16 | adantr 481 |
. . . . . . . . . . . 12
  

     Scalar    |
87 | 86 | eqcomd 2628 |
. . . . . . . . . . 11
  

     Scalar    |
88 | 87 | fveq2d 6195 |
. . . . . . . . . 10
  

        Scalar         |
89 | | eqid 2622 |
. . . . . . . . . . 11
         |
90 | 53, 89 | mgpbas 18495 |
. . . . . . . . . 10
         |
91 | 88, 90 | syl6eq 2672 |
. . . . . . . . 9
  

        Scalar         |
92 | 85, 91 | eleqtrrd 2704 |
. . . . . . . 8
  

              Scalar     |
93 | 1, 2, 11, 47, 42 | asclval 19335 |
. . . . . . . 8
          Scalar                                 |
94 | 92, 93 | syl 17 |
. . . . . . 7
  

                                   |
95 | 70, 73, 94 | 3eqtr4d 2666 |
. . . . . 6
  

                         |
96 | 95 | oveq1d 6665 |
. . . . 5
  

                           
     |
97 | 96 | oveq2d 6666 |
. . . 4
  

                
                  
     |
98 | 97 | mpteq2dva 4744 |
. . 3
          
   
                             
      |
99 | 98 | oveq2d 6666 |
. 2
    g                 
       g                   
        |
100 | 30, 99 | eqtrd 2656 |
1
            g                   
        |