MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lply1binomsc Structured version   Visualization version   Unicode version

Theorem lply1binomsc 19677
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring:  ( X  +  A ) ^ N is the sum from  k  =  0 to  N of  ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( X ^ k ) ). (Contributed by AV, 25-Aug-2019.)
Hypotheses
Ref Expression
cply1binom.p  |-  P  =  (Poly1 `  R )
cply1binom.x  |-  X  =  (var1 `  R )
cply1binom.a  |-  .+  =  ( +g  `  P )
cply1binom.m  |-  .X.  =  ( .r `  P )
cply1binom.t  |-  .x.  =  (.g
`  P )
cply1binom.g  |-  G  =  (mulGrp `  P )
cply1binom.e  |-  .^  =  (.g
`  G )
lply1binomsc.k  |-  K  =  ( Base `  R
)
lply1binomsc.s  |-  S  =  (algSc `  P )
lply1binomsc.h  |-  H  =  (mulGrp `  R )
lply1binomsc.e  |-  E  =  (.g `  H )
Assertion
Ref Expression
lply1binomsc  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  ( N  .^  ( X  .+  ( S `  A ) ) )  =  ( P  gsumg  ( k  e.  ( 0 ... N ) 
|->  ( ( N  _C  k )  .x.  (
( S `  (
( N  -  k
) E A ) )  .X.  ( k  .^  X ) ) ) ) ) )
Distinct variable groups:    A, k    k, K    k, N    P, k    R, k    k, X    .X. , k    .x. , k    .^ , k    .+ , k    S, k
Allowed substitution hints:    E( k)    G( k)    H( k)

Proof of Theorem lply1binomsc
StepHypRef Expression
1 lply1binomsc.s . . . . . 6  |-  S  =  (algSc `  P )
2 eqid 2622 . . . . . 6  |-  (Scalar `  P )  =  (Scalar `  P )
3 crngring 18558 . . . . . . . 8  |-  ( R  e.  CRing  ->  R  e.  Ring )
4 cply1binom.p . . . . . . . . 9  |-  P  =  (Poly1 `  R )
54ply1ring 19618 . . . . . . . 8  |-  ( R  e.  Ring  ->  P  e. 
Ring )
63, 5syl 17 . . . . . . 7  |-  ( R  e.  CRing  ->  P  e.  Ring )
763ad2ant1 1082 . . . . . 6  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  P  e.  Ring )
84ply1lmod 19622 . . . . . . . 8  |-  ( R  e.  Ring  ->  P  e. 
LMod )
93, 8syl 17 . . . . . . 7  |-  ( R  e.  CRing  ->  P  e.  LMod )
1093ad2ant1 1082 . . . . . 6  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  P  e.  LMod )
11 eqid 2622 . . . . . 6  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
12 eqid 2622 . . . . . 6  |-  ( Base `  P )  =  (
Base `  P )
131, 2, 7, 10, 11, 12asclf 19337 . . . . 5  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  S : ( Base `  (Scalar `  P ) ) --> (
Base `  P )
)
14 lply1binomsc.k . . . . . . 7  |-  K  =  ( Base `  R
)
154ply1sca 19623 . . . . . . . . 9  |-  ( R  e.  CRing  ->  R  =  (Scalar `  P ) )
16153ad2ant1 1082 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  R  =  (Scalar `  P )
)
1716fveq2d 6195 . . . . . . 7  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  ( Base `  R )  =  ( Base `  (Scalar `  P ) ) )
1814, 17syl5eq 2668 . . . . . 6  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  K  =  ( Base `  (Scalar `  P ) ) )
1918feq2d 6031 . . . . 5  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  ( S : K --> ( Base `  P )  <->  S :
( Base `  (Scalar `  P
) ) --> ( Base `  P ) ) )
2013, 19mpbird 247 . . . 4  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  S : K --> ( Base `  P
) )
21 simp3 1063 . . . 4  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  A  e.  K )
2220, 21ffvelrnd 6360 . . 3  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  ( S `  A )  e.  ( Base `  P
) )
23 cply1binom.x . . . 4  |-  X  =  (var1 `  R )
24 cply1binom.a . . . 4  |-  .+  =  ( +g  `  P )
25 cply1binom.m . . . 4  |-  .X.  =  ( .r `  P )
26 cply1binom.t . . . 4  |-  .x.  =  (.g
`  P )
27 cply1binom.g . . . 4  |-  G  =  (mulGrp `  P )
28 cply1binom.e . . . 4  |-  .^  =  (.g
`  G )
294, 23, 24, 25, 26, 27, 28, 12lply1binom 19676 . . 3  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  ( S `
 A )  e.  ( Base `  P
) )  ->  ( N  .^  ( X  .+  ( S `  A ) ) )  =  ( P  gsumg  ( k  e.  ( 0 ... N ) 
|->  ( ( N  _C  k )  .x.  (
( ( N  -  k )  .^  ( S `  A )
)  .X.  ( k  .^  X ) ) ) ) ) )
3022, 29syld3an3 1371 . 2  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  ( N  .^  ( X  .+  ( S `  A ) ) )  =  ( P  gsumg  ( k  e.  ( 0 ... N ) 
|->  ( ( N  _C  k )  .x.  (
( ( N  -  k )  .^  ( S `  A )
)  .X.  ( k  .^  X ) ) ) ) ) )
314ply1assa 19569 . . . . . . . . . . 11  |-  ( R  e.  CRing  ->  P  e. AssAlg )
32313ad2ant1 1082 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  P  e. AssAlg )
3332adantr 481 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  P  e. AssAlg )
34 fznn0sub 12373 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  NN0 )
3534adantl 482 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( N  -  k )  e.  NN0 )
3615fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  (Scalar `  P
) ) )
3714, 36syl5eq 2668 . . . . . . . . . . . . 13  |-  ( R  e.  CRing  ->  K  =  ( Base `  (Scalar `  P
) ) )
3837eleq2d 2687 . . . . . . . . . . . 12  |-  ( R  e.  CRing  ->  ( A  e.  K  <->  A  e.  ( Base `  (Scalar `  P
) ) ) )
3938biimpa 501 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  A  e.  K )  ->  A  e.  ( Base `  (Scalar `  P ) ) )
40393adant2 1080 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  A  e.  ( Base `  (Scalar `  P ) ) )
4140adantr 481 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  A  e.  (
Base `  (Scalar `  P
) ) )
42 eqid 2622 . . . . . . . . . . . . 13  |-  ( 1r
`  P )  =  ( 1r `  P
)
4312, 42ringidcl 18568 . . . . . . . . . . . 12  |-  ( P  e.  Ring  ->  ( 1r
`  P )  e.  ( Base `  P
) )
446, 43syl 17 . . . . . . . . . . 11  |-  ( R  e.  CRing  ->  ( 1r `  P )  e.  (
Base `  P )
)
45443ad2ant1 1082 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  ( 1r `  P )  e.  ( Base `  P
) )
4645adantr 481 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( 1r `  P )  e.  (
Base `  P )
)
47 eqid 2622 . . . . . . . . . 10  |-  ( .s
`  P )  =  ( .s `  P
)
48 eqid 2622 . . . . . . . . . 10  |-  (mulGrp `  (Scalar `  P ) )  =  (mulGrp `  (Scalar `  P ) )
49 eqid 2622 . . . . . . . . . 10  |-  (.g `  (mulGrp `  (Scalar `  P )
) )  =  (.g `  (mulGrp `  (Scalar `  P
) ) )
5012, 2, 11, 47, 48, 49, 27, 28assamulgscm 19350 . . . . . . . . 9  |-  ( ( P  e. AssAlg  /\  (
( N  -  k
)  e.  NN0  /\  A  e.  ( Base `  (Scalar `  P )
)  /\  ( 1r `  P )  e.  (
Base `  P )
) )  ->  (
( N  -  k
)  .^  ( A
( .s `  P
) ( 1r `  P ) ) )  =  ( ( ( N  -  k ) (.g `  (mulGrp `  (Scalar `  P ) ) ) A ) ( .s
`  P ) ( ( N  -  k
)  .^  ( 1r `  P ) ) ) )
5133, 35, 41, 46, 50syl13anc 1328 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  -  k )  .^  ( A ( .s `  P ) ( 1r
`  P ) ) )  =  ( ( ( N  -  k
) (.g `  (mulGrp `  (Scalar `  P ) ) ) A ) ( .s
`  P ) ( ( N  -  k
)  .^  ( 1r `  P ) ) ) )
52 lply1binomsc.e . . . . . . . . . . . . . 14  |-  E  =  (.g `  H )
53 lply1binomsc.h . . . . . . . . . . . . . . . 16  |-  H  =  (mulGrp `  R )
5415fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( R  e.  CRing  ->  (mulGrp `  R
)  =  (mulGrp `  (Scalar `  P ) ) )
5553, 54syl5eq 2668 . . . . . . . . . . . . . . 15  |-  ( R  e.  CRing  ->  H  =  (mulGrp `  (Scalar `  P
) ) )
5655fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( R  e.  CRing  ->  (.g `  H
)  =  (.g `  (mulGrp `  (Scalar `  P )
) ) )
5752, 56syl5eq 2668 . . . . . . . . . . . . 13  |-  ( R  e.  CRing  ->  E  =  (.g
`  (mulGrp `  (Scalar `  P
) ) ) )
58573ad2ant1 1082 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  E  =  (.g `  (mulGrp `  (Scalar `  P ) ) ) )
5958adantr 481 . . . . . . . . . . 11  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  E  =  (.g `  (mulGrp `  (Scalar `  P
) ) ) )
6059eqcomd 2628 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  (.g `  (mulGrp `  (Scalar `  P ) ) )  =  E )
6160oveqd 6667 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  -  k ) (.g `  (mulGrp `  (Scalar `  P
) ) ) A )  =  ( ( N  -  k ) E A ) )
6227ringmgp 18553 . . . . . . . . . . . 12  |-  ( P  e.  Ring  ->  G  e. 
Mnd )
636, 62syl 17 . . . . . . . . . . 11  |-  ( R  e.  CRing  ->  G  e.  Mnd )
64633ad2ant1 1082 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  G  e.  Mnd )
6527, 12mgpbas 18495 . . . . . . . . . . 11  |-  ( Base `  P )  =  (
Base `  G )
6627, 42ringidval 18503 . . . . . . . . . . 11  |-  ( 1r
`  P )  =  ( 0g `  G
)
6765, 28, 66mulgnn0z 17567 . . . . . . . . . 10  |-  ( ( G  e.  Mnd  /\  ( N  -  k
)  e.  NN0 )  ->  ( ( N  -  k )  .^  ( 1r `  P ) )  =  ( 1r `  P ) )
6864, 34, 67syl2an 494 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  -  k )  .^  ( 1r `  P ) )  =  ( 1r
`  P ) )
6961, 68oveq12d 6668 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( ( ( N  -  k ) (.g `  (mulGrp `  (Scalar `  P ) ) ) A ) ( .s
`  P ) ( ( N  -  k
)  .^  ( 1r `  P ) ) )  =  ( ( ( N  -  k ) E A ) ( .s `  P ) ( 1r `  P
) ) )
7051, 69eqtrd 2656 . . . . . . 7  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  -  k )  .^  ( A ( .s `  P ) ( 1r
`  P ) ) )  =  ( ( ( N  -  k
) E A ) ( .s `  P
) ( 1r `  P ) ) )
711, 2, 11, 47, 42asclval 19335 . . . . . . . . 9  |-  ( A  e.  ( Base `  (Scalar `  P ) )  -> 
( S `  A
)  =  ( A ( .s `  P
) ( 1r `  P ) ) )
7241, 71syl 17 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( S `  A )  =  ( A ( .s `  P ) ( 1r
`  P ) ) )
7372oveq2d 6666 . . . . . . 7  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  -  k )  .^  ( S `  A ) )  =  ( ( N  -  k ) 
.^  ( A ( .s `  P ) ( 1r `  P
) ) ) )
7453ringmgp 18553 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  H  e. 
Mnd )
753, 74syl 17 . . . . . . . . . . . 12  |-  ( R  e.  CRing  ->  H  e.  Mnd )
76753ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  H  e.  Mnd )
7776adantr 481 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  H  e.  Mnd )
78 simpr 477 . . . . . . . . . . . . 13  |-  ( ( R  e.  CRing  /\  A  e.  K )  ->  A  e.  K )
7953, 14mgpbas 18495 . . . . . . . . . . . . 13  |-  K  =  ( Base `  H
)
8078, 79syl6eleq 2711 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  A  e.  K )  ->  A  e.  ( Base `  H
) )
81803adant2 1080 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  A  e.  ( Base `  H
) )
8281adantr 481 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  A  e.  (
Base `  H )
)
83 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  H )  =  (
Base `  H )
8483, 52mulgnn0cl 17558 . . . . . . . . . 10  |-  ( ( H  e.  Mnd  /\  ( N  -  k
)  e.  NN0  /\  A  e.  ( Base `  H ) )  -> 
( ( N  -  k ) E A )  e.  ( Base `  H ) )
8577, 35, 82, 84syl3anc 1326 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  -  k ) E A )  e.  (
Base `  H )
)
8616adantr 481 . . . . . . . . . . . 12  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  R  =  (Scalar `  P ) )
8786eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  (Scalar `  P )  =  R )
8887fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( Base `  (Scalar `  P ) )  =  ( Base `  R
) )
89 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
9053, 89mgpbas 18495 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  H )
9188, 90syl6eq 2672 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( Base `  (Scalar `  P ) )  =  ( Base `  H
) )
9285, 91eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  -  k ) E A )  e.  (
Base `  (Scalar `  P
) ) )
931, 2, 11, 47, 42asclval 19335 . . . . . . . 8  |-  ( ( ( N  -  k
) E A )  e.  ( Base `  (Scalar `  P ) )  -> 
( S `  (
( N  -  k
) E A ) )  =  ( ( ( N  -  k
) E A ) ( .s `  P
) ( 1r `  P ) ) )
9492, 93syl 17 . . . . . . 7  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( S `  ( ( N  -  k ) E A ) )  =  ( ( ( N  -  k ) E A ) ( .s `  P ) ( 1r
`  P ) ) )
9570, 73, 943eqtr4d 2666 . . . . . 6  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  -  k )  .^  ( S `  A ) )  =  ( S `
 ( ( N  -  k ) E A ) ) )
9695oveq1d 6665 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( ( ( N  -  k ) 
.^  ( S `  A ) )  .X.  ( k  .^  X
) )  =  ( ( S `  (
( N  -  k
) E A ) )  .X.  ( k  .^  X ) ) )
9796oveq2d 6666 . . . 4  |-  ( ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  _C  k )  .x.  ( ( ( N  -  k )  .^  ( S `  A ) )  .X.  ( k  .^  X ) ) )  =  ( ( N  _C  k )  .x.  ( ( S `  ( ( N  -  k ) E A ) )  .X.  (
k  .^  X )
) ) )
9897mpteq2dva 4744 . . 3  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  (
k  e.  ( 0 ... N )  |->  ( ( N  _C  k
)  .x.  ( (
( N  -  k
)  .^  ( S `  A ) )  .X.  ( k  .^  X
) ) ) )  =  ( k  e.  ( 0 ... N
)  |->  ( ( N  _C  k )  .x.  ( ( S `  ( ( N  -  k ) E A ) )  .X.  (
k  .^  X )
) ) ) )
9998oveq2d 6666 . 2  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  ( P  gsumg  ( k  e.  ( 0 ... N ) 
|->  ( ( N  _C  k )  .x.  (
( ( N  -  k )  .^  ( S `  A )
)  .X.  ( k  .^  X ) ) ) ) )  =  ( P  gsumg  ( k  e.  ( 0 ... N ) 
|->  ( ( N  _C  k )  .x.  (
( S `  (
( N  -  k
) E A ) )  .X.  ( k  .^  X ) ) ) ) ) )
10030, 99eqtrd 2656 1  |-  ( ( R  e.  CRing  /\  N  e.  NN0  /\  A  e.  K )  ->  ( N  .^  ( X  .+  ( S `  A ) ) )  =  ( P  gsumg  ( k  e.  ( 0 ... N ) 
|->  ( ( N  _C  k )  .x.  (
( S `  (
( N  -  k
) E A ) )  .X.  ( k  .^  X ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936    - cmin 10266   NN0cn0 11292   ...cfz 12326    _C cbc 13089   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945    gsumg cgsu 16101   Mndcmnd 17294  .gcmg 17540  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547   CRingccrg 18548   LModclmod 18863  AssAlgcasa 19309  algSccascl 19311  var1cv1 19546  Poly1cpl1 19547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-fac 13061  df-bc 13090  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-lss 18933  df-assa 19312  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-vr1 19551  df-ply1 19552
This theorem is referenced by:  chpscmatgsumbin  20649
  Copyright terms: Public domain W3C validator