MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem12 Structured version   Visualization version   Unicode version

Theorem axcontlem12 25855
Description: Lemma for axcont 25856. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcontlem12  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Distinct variable groups:    A, b, x    B, b, x, y    N, b, x, y    Z, b, x, y
Allowed substitution hint:    A( y)

Proof of Theorem axcontlem12
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 rzal 4073 . . . . . . . . 9  |-  ( B  =  (/)  ->  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
21ralrimivw 2967 . . . . . . . 8  |-  ( B  =  (/)  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
3 breq1 4656 . . . . . . . . . . 11  |-  ( b  =  Z  ->  (
b  Btwn  <. x ,  y >.  <->  Z  Btwn  <. x ,  y >. )
)
432ralbidv 2989 . . . . . . . . . 10  |-  ( b  =  Z  ->  ( A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
54rspcev 3309 . . . . . . . . 9  |-  ( ( Z  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
65expcom 451 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>.  ->  ( Z  e.  ( EE `  N
)  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
72, 6syl 17 . . . . . . 7  |-  ( B  =  (/)  ->  ( Z  e.  ( EE `  N )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
87adantld 483 . . . . . 6  |-  ( B  =  (/)  ->  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
98adantld 483 . . . . 5  |-  ( B  =  (/)  ->  ( ( ( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
10 simprrl 804 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )
11 simprrr 805 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  Z  e.  ( EE `  N ) )
12 simprll 802 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  u  e.  A
)
13 simpl 473 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  B  =/=  (/) )
1411, 12, 133jca 1242 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  ( Z  e.  ( EE `  N
)  /\  u  e.  A  /\  B  =/=  (/) ) )
15 simprlr 803 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  Z  =/=  u
)
16 axcontlem11 25854 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  u  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  u ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
1710, 14, 15, 16syl12anc 1324 . . . . . 6  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
1817ex 450 . . . . 5  |-  ( B  =/=  (/)  ->  ( (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
199, 18pm2.61ine 2877 . . . 4  |-  ( ( ( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
2019ex 450 . . 3  |-  ( ( u  e.  A  /\  Z  =/=  u )  -> 
( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
2120rexlimiva 3028 . 2  |-  ( E. u  e.  A  Z  =/=  u  ->  ( (
( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
22 df-ne 2795 . . . . . 6  |-  ( Z  =/=  u  <->  -.  Z  =  u )
2322con2bii 347 . . . . 5  |-  ( Z  =  u  <->  -.  Z  =/=  u )
2423ralbii 2980 . . . 4  |-  ( A. u  e.  A  Z  =  u  <->  A. u  e.  A  -.  Z  =/=  u
)
25 ralnex 2992 . . . 4  |-  ( A. u  e.  A  -.  Z  =/=  u  <->  -.  E. u  e.  A  Z  =/=  u )
2624, 25bitri 264 . . 3  |-  ( A. u  e.  A  Z  =  u  <->  -.  E. u  e.  A  Z  =/=  u )
27 simpr3 1069 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. )
28 eqeq2 2633 . . . . . . . . . . 11  |-  ( u  =  x  ->  ( Z  =  u  <->  Z  =  x ) )
2928rspccva 3308 . . . . . . . . . 10  |-  ( ( A. u  e.  A  Z  =  u  /\  x  e.  A )  ->  Z  =  x )
30 opeq1 4402 . . . . . . . . . . . . 13  |-  ( Z  =  x  ->  <. Z , 
y >.  =  <. x ,  y >. )
3130breq2d 4665 . . . . . . . . . . . 12  |-  ( Z  =  x  ->  (
x  Btwn  <. Z , 
y >. 
<->  x  Btwn  <. x ,  y >. ) )
32 breq1 4656 . . . . . . . . . . . 12  |-  ( Z  =  x  ->  ( Z  Btwn  <. x ,  y
>. 
<->  x  Btwn  <. x ,  y >. ) )
3331, 32bitr4d 271 . . . . . . . . . . 11  |-  ( Z  =  x  ->  (
x  Btwn  <. Z , 
y >. 
<->  Z  Btwn  <. x ,  y >. ) )
3433ralbidv 2986 . . . . . . . . . 10  |-  ( Z  =  x  ->  ( A. y  e.  B  x  Btwn  <. Z ,  y
>. 
<-> 
A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3529, 34syl 17 . . . . . . . . 9  |-  ( ( A. u  e.  A  Z  =  u  /\  x  e.  A )  ->  ( A. y  e.  B  x  Btwn  <. Z , 
y >. 
<-> 
A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3635ralbidva 2985 . . . . . . . 8  |-  ( A. u  e.  A  Z  =  u  ->  ( A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3736biimpa 501 . . . . . . 7  |-  ( ( A. u  e.  A  Z  =  u  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
3827, 37sylan2 491 . . . . . 6  |-  ( ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) ) )  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. )
3938, 5sylan2 491 . . . . 5  |-  ( ( Z  e.  ( EE
`  N )  /\  ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
4039ancoms 469 . . . 4  |-  ( ( ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
4140expl 648 . . 3  |-  ( A. u  e.  A  Z  =  u  ->  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
4226, 41sylbir 225 . 2  |-  ( -. 
E. u  e.  A  Z  =/=  u  ->  (
( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
4321, 42pm2.61i 176 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   <.cop 4183   class class class wbr 4653   ` cfv 5888   NNcn 11020   EEcee 25768    Btwn cbtwn 25769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-z 11378  df-uz 11688  df-ico 12181  df-icc 12182  df-fz 12327  df-ee 25771  df-btwn 25772
This theorem is referenced by:  axcont  25856
  Copyright terms: Public domain W3C validator