MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem5 Structured version   Visualization version   Unicode version

Theorem axcontlem5 25848
Description: Lemma for axcont 25856. Compute the value of  F. (Contributed by Scott Fenton, 18-Jun-2013.)
Hypotheses
Ref Expression
axcontlem5.1  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
axcontlem5.2  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
Assertion
Ref Expression
axcontlem5  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  (
( F `  P
)  =  T  <->  ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) ) ) )
Distinct variable groups:    t, D, x    i, p, t, x, N    P, i, t, x   
x, T, i, t    U, i, p, t, x   
i, Z, p, t, x
Allowed substitution hints:    D( i, p)    P( p)    T( p)    F( x, t, i, p)

Proof of Theorem axcontlem5
StepHypRef Expression
1 axcontlem5.1 . . . . . 6  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
2 axcontlem5.2 . . . . . 6  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
31, 2axcontlem2 25845 . . . . 5  |-  ( ( ( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U )  ->  F : D -1-1-onto-> ( 0 [,) +oo ) )
4 f1of 6137 . . . . 5  |-  ( F : D -1-1-onto-> ( 0 [,) +oo )  ->  F : D --> ( 0 [,) +oo ) )
53, 4syl 17 . . . 4  |-  ( ( ( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U )  ->  F : D --> ( 0 [,) +oo ) )
65ffvelrnda 6359 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  ( F `  P )  e.  ( 0 [,) +oo ) )
7 eleq1 2689 . . 3  |-  ( ( F `  P )  =  T  ->  (
( F `  P
)  e.  ( 0 [,) +oo )  <->  T  e.  ( 0 [,) +oo ) ) )
86, 7syl5ibcom 235 . 2  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  (
( F `  P
)  =  T  ->  T  e.  ( 0 [,) +oo ) ) )
9 simpl 473 . . 3  |-  ( ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i ) )  +  ( T  x.  ( U `  i )
) ) )  ->  T  e.  ( 0 [,) +oo ) )
109a1i 11 . 2  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  (
( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  T
)  x.  ( Z `
 i ) )  +  ( T  x.  ( U `  i ) ) ) )  ->  T  e.  ( 0 [,) +oo ) ) )
11 f1ofn 6138 . . . . . . 7  |-  ( F : D -1-1-onto-> ( 0 [,) +oo )  ->  F  Fn  D
)
123, 11syl 17 . . . . . 6  |-  ( ( ( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U )  ->  F  Fn  D )
13 fnbrfvb 6236 . . . . . 6  |-  ( ( F  Fn  D  /\  P  e.  D )  ->  ( ( F `  P )  =  T  <-> 
P F T ) )
1412, 13sylan 488 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  (
( F `  P
)  =  T  <->  P F T ) )
15143adant3 1081 . . . 4  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  ->  (
( F `  P
)  =  T  <->  P F T ) )
16 eleq1 2689 . . . . . . . 8  |-  ( x  =  P  ->  (
x  e.  D  <->  P  e.  D ) )
17 fveq1 6190 . . . . . . . . . . 11  |-  ( x  =  P  ->  (
x `  i )  =  ( P `  i ) )
1817eqeq1d 2624 . . . . . . . . . 10  |-  ( x  =  P  ->  (
( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( U `  i
) ) )  <->  ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( U `  i ) ) ) ) )
1918ralbidv 2986 . . . . . . . . 9  |-  ( x  =  P  ->  ( A. i  e.  (
1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) )  <->  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( U `  i ) ) ) ) )
2019anbi2d 740 . . . . . . . 8  |-  ( x  =  P  ->  (
( t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( U `  i
) ) ) )  <-> 
( t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( U `  i
) ) ) ) ) )
2116, 20anbi12d 747 . . . . . . 7  |-  ( x  =  P  ->  (
( x  e.  D  /\  ( t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( U `  i
) ) ) ) )  <->  ( P  e.  D  /\  ( t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( U `  i ) ) ) ) ) ) )
22 eleq1 2689 . . . . . . . . . 10  |-  ( t  =  T  ->  (
t  e.  ( 0 [,) +oo )  <->  T  e.  ( 0 [,) +oo ) ) )
23 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( t  =  T  ->  (
1  -  t )  =  ( 1  -  T ) )
2423oveq1d 6665 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  (
( 1  -  t
)  x.  ( Z `
 i ) )  =  ( ( 1  -  T )  x.  ( Z `  i
) ) )
25 oveq1 6657 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  (
t  x.  ( U `
 i ) )  =  ( T  x.  ( U `  i ) ) )
2624, 25oveq12d 6668 . . . . . . . . . . . 12  |-  ( t  =  T  ->  (
( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( U `  i ) ) )  =  ( ( ( 1  -  T )  x.  ( Z `  i ) )  +  ( T  x.  ( U `  i )
) ) )
2726eqeq2d 2632 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( U `  i
) ) )  <->  ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) ) )
2827ralbidv 2986 . . . . . . . . . 10  |-  ( t  =  T  ->  ( A. i  e.  (
1 ... N ) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) )  <->  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) ) )
2922, 28anbi12d 747 . . . . . . . . 9  |-  ( t  =  T  ->  (
( t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( U `  i
) ) ) )  <-> 
( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  T
)  x.  ( Z `
 i ) )  +  ( T  x.  ( U `  i ) ) ) ) ) )
3029anbi2d 740 . . . . . . . 8  |-  ( t  =  T  ->  (
( P  e.  D  /\  ( t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( U `  i
) ) ) ) )  <->  ( P  e.  D  /\  ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) ) ) ) )
31 anass 681 . . . . . . . . . . 11  |-  ( ( ( P  e.  D  /\  T  e.  (
0 [,) +oo )
)  /\  T  e.  ( 0 [,) +oo ) )  <->  ( P  e.  D  /\  ( T  e.  ( 0 [,) +oo )  /\  T  e.  ( 0 [,) +oo ) ) ) )
32 anidm 676 . . . . . . . . . . . 12  |-  ( ( T  e.  ( 0 [,) +oo )  /\  T  e.  ( 0 [,) +oo ) )  <-> 
T  e.  ( 0 [,) +oo ) )
3332anbi2i 730 . . . . . . . . . . 11  |-  ( ( P  e.  D  /\  ( T  e.  (
0 [,) +oo )  /\  T  e.  (
0 [,) +oo )
) )  <->  ( P  e.  D  /\  T  e.  ( 0 [,) +oo ) ) )
3431, 33bitr2i 265 . . . . . . . . . 10  |-  ( ( P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  <-> 
( ( P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  /\  T  e.  ( 0 [,) +oo ) ) )
3534anbi1i 731 . . . . . . . . 9  |-  ( ( ( P  e.  D  /\  T  e.  (
0 [,) +oo )
)  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) )  <->  ( ( ( P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  /\  T  e.  ( 0 [,) +oo )
)  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) ) )
36 anass 681 . . . . . . . . 9  |-  ( ( ( P  e.  D  /\  T  e.  (
0 [,) +oo )
)  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) )  <->  ( P  e.  D  /\  ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) ) ) )
37 anass 681 . . . . . . . . 9  |-  ( ( ( ( P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  /\  T  e.  ( 0 [,) +oo ) )  /\  A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i ) )  +  ( T  x.  ( U `  i )
) ) )  <->  ( ( P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  /\  ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) ) ) )
3835, 36, 373bitr3i 290 . . . . . . . 8  |-  ( ( P  e.  D  /\  ( T  e.  (
0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  T
)  x.  ( Z `
 i ) )  +  ( T  x.  ( U `  i ) ) ) ) )  <-> 
( ( P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  /\  ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i ) )  +  ( T  x.  ( U `  i )
) ) ) ) )
3930, 38syl6bb 276 . . . . . . 7  |-  ( t  =  T  ->  (
( P  e.  D  /\  ( t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( U `  i
) ) ) ) )  <->  ( ( P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  /\  ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i ) )  +  ( T  x.  ( U `  i )
) ) ) ) ) )
4021, 39, 2brabg 4994 . . . . . 6  |-  ( ( P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  ->  ( P F T  <->  ( ( P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  /\  ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i ) )  +  ( T  x.  ( U `  i )
) ) ) ) ) )
4140bianabs 924 . . . . 5  |-  ( ( P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  ->  ( P F T  <->  ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) ) ) )
42413adant1 1079 . . . 4  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  ->  ( P F T  <->  ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) ) ) )
4315, 42bitrd 268 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D  /\  T  e.  ( 0 [,) +oo ) )  ->  (
( F `  P
)  =  T  <->  ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) ) ) )
44433expia 1267 . 2  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  ( T  e.  ( 0 [,) +oo )  -> 
( ( F `  P )  =  T  <-> 
( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  T
)  x.  ( Z `
 i ) )  +  ( T  x.  ( U `  i ) ) ) ) ) ) )
458, 10, 44pm5.21ndd 369 1  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  (
( F `  P
)  =  T  <->  ( T  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  T )  x.  ( Z `  i )
)  +  ( T  x.  ( U `  i ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   <.cop 4183   class class class wbr 4653   {copab 4712    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    - cmin 10266   NNcn 11020   [,)cico 12177   ...cfz 12326   EEcee 25768    Btwn cbtwn 25769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-z 11378  df-uz 11688  df-ico 12181  df-icc 12182  df-fz 12327  df-ee 25771  df-btwn 25772
This theorem is referenced by:  axcontlem6  25849
  Copyright terms: Public domain W3C validator