Proof of Theorem clwwlkextfrlem1
Step | Hyp | Ref
| Expression |
1 | | wwlknbp2 26752 |
. . . 4
  WWalksN 
 Word Vtx           |
2 | | simpll 790 |
. . . . . . 7
   Word Vtx          lastS      
 Vtx    
Word Vtx    |
3 | | s1cl 13382 |
. . . . . . . . . 10
 Vtx 
    Word
Vtx    |
4 | 3 | adantl 482 |
. . . . . . . . 9
 
Vtx       Word
Vtx    |
5 | 4 | adantl 482 |
. . . . . . . 8
  lastS      
 Vtx        Word
Vtx    |
6 | 5 | adantl 482 |
. . . . . . 7
   Word Vtx          lastS      
 Vtx         Word Vtx    |
7 | | nn0p1gt0 11322 |
. . . . . . . . . . 11

    |
8 | 7 | adantr 481 |
. . . . . . . . . 10
 
Vtx       |
9 | 8 | adantl 482 |
. . . . . . . . 9
  lastS      
 Vtx        |
10 | 9 | adantl 482 |
. . . . . . . 8
   Word Vtx          lastS      
 Vtx    
    |
11 | | breq2 4657 |
. . . . . . . . . 10
       
    
    |
12 | 11 | adantl 482 |
. . . . . . . . 9
  Word Vtx         
    
    |
13 | 12 | adantr 481 |
. . . . . . . 8
   Word Vtx          lastS      
 Vtx         
     |
14 | 10, 13 | mpbird 247 |
. . . . . . 7
   Word Vtx          lastS      
 Vtx    
      |
15 | | ccatfv0 13367 |
. . . . . . 7
  Word Vtx      Word Vtx         ++               |
16 | 2, 6, 14, 15 | syl3anc 1326 |
. . . . . 6
   Word Vtx          lastS      
 Vtx       ++               |
17 | | oveq1 6657 |
. . . . . . . . . . . . . . . 16
                   |
18 | 17 | adantl 482 |
. . . . . . . . . . . . . . 15
  Word Vtx                     |
19 | 18 | adantr 481 |
. . . . . . . . . . . . . 14
   Word Vtx         
Vtx                |
20 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . 17

  |
21 | | pncan1 10454 |
. . . . . . . . . . . . . . . . 17
       |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . . . 16

      |
23 | 22 | adantr 481 |
. . . . . . . . . . . . . . 15
 
Vtx         |
24 | 23 | adantl 482 |
. . . . . . . . . . . . . 14
   Word Vtx         
Vtx          |
25 | 19, 24 | eqtr2d 2657 |
. . . . . . . . . . . . 13
   Word Vtx         
Vtx            |
26 | 25 | fveq2d 6195 |
. . . . . . . . . . . 12
   Word Vtx         
Vtx      ++           ++                 |
27 | | simpll 790 |
. . . . . . . . . . . . 13
   Word Vtx         
Vtx    Word Vtx    |
28 | 4 | adantl 482 |
. . . . . . . . . . . . 13
   Word Vtx         
Vtx        Word
Vtx    |
29 | 8 | adantl 482 |
. . . . . . . . . . . . . . 15
   Word Vtx         
Vtx        |
30 | 12 | adantr 481 |
. . . . . . . . . . . . . . 15
   Word Vtx         
Vtx    
    
    |
31 | 29, 30 | mpbird 247 |
. . . . . . . . . . . . . 14
   Word Vtx         
Vtx          |
32 | | hashneq0 13155 |
. . . . . . . . . . . . . . . . 17
 Word Vtx 
    
   |
33 | 32 | bicomd 213 |
. . . . . . . . . . . . . . . 16
 Word Vtx 
        |
34 | 33 | adantr 481 |
. . . . . . . . . . . . . . 15
  Word Vtx                 |
35 | 34 | adantr 481 |
. . . . . . . . . . . . . 14
   Word Vtx         
Vtx            |
36 | 31, 35 | mpbird 247 |
. . . . . . . . . . . . 13
   Word Vtx         
Vtx      |
37 | | ccatval1lsw 13368 |
. . . . . . . . . . . . 13
  Word Vtx      Word Vtx     ++               lastS     |
38 | 27, 28, 36, 37 | syl3anc 1326 |
. . . . . . . . . . . 12
   Word Vtx         
Vtx      ++               lastS     |
39 | 26, 38 | eqtr2d 2657 |
. . . . . . . . . . 11
   Word Vtx         
Vtx    lastS     ++           |
40 | 39 | neeq1d 2853 |
. . . . . . . . . 10
   Word Vtx         
Vtx     lastS         ++                |
41 | 40 | biimpd 219 |
. . . . . . . . 9
   Word Vtx         
Vtx     lastS      
  ++                |
42 | 41 | ex 450 |
. . . . . . . 8
  Word Vtx           Vtx    lastS         ++                 |
43 | 42 | com23 86 |
. . . . . . 7
  Word Vtx          lastS      
 
Vtx  
  ++                 |
44 | 43 | imp32 449 |
. . . . . 6
   Word Vtx          lastS      
 Vtx       ++               |
45 | 16, 44 | jca 554 |
. . . . 5
   Word Vtx          lastS      
 Vtx        ++               ++                |
46 | 45 | exp32 631 |
. . . 4
  Word Vtx          lastS      
 
Vtx  
   ++               ++                  |
47 | 1, 46 | syl 17 |
. . 3
  WWalksN 
 lastS        
Vtx      ++               ++                  |
48 | 47 | imp 445 |
. 2
   WWalksN  lastS       
 
Vtx  
   ++               ++                 |
49 | 48 | impcom 446 |
1
   Vtx   
 WWalksN  lastS            ++            
  ++                |