MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkextfrlem1 Structured version   Visualization version   Unicode version

Theorem clwwlkextfrlem1 27208
Description: Lemma for numclwwlk2lem1 27235. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-May-2021.)
Assertion
Ref Expression
clwwlkextfrlem1  |-  ( ( ( N  e.  NN0  /\  X  e.  (Vtx `  G ) )  /\  ( W  e.  ( N WWalksN  G )  /\  ( lastS  `  W )  =/=  ( W `  0 )
) )  ->  (
( ( W ++  <" X "> ) `  0 )  =  ( W `  0
)  /\  ( ( W ++  <" X "> ) `  N )  =/=  ( W ` 
0 ) ) )

Proof of Theorem clwwlkextfrlem1
StepHypRef Expression
1 wwlknbp2 26752 . . . 4  |-  ( W  e.  ( N WWalksN  G
)  ->  ( W  e. Word  (Vtx `  G )  /\  ( # `  W
)  =  ( N  +  1 ) ) )
2 simpll 790 . . . . . . 7  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  (
( lastS  `  W )  =/=  ( W `  0
)  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) ) )  ->  W  e. Word  (Vtx `  G
) )
3 s1cl 13382 . . . . . . . . . 10  |-  ( X  e.  (Vtx `  G
)  ->  <" X ">  e. Word  (Vtx `  G
) )
43adantl 482 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  X  e.  (Vtx `  G
) )  ->  <" X ">  e. Word  (Vtx `  G
) )
54adantl 482 . . . . . . . 8  |-  ( ( ( lastS  `  W )  =/=  ( W `  0
)  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  <" X ">  e. Word  (Vtx `  G
) )
65adantl 482 . . . . . . 7  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  (
( lastS  `  W )  =/=  ( W `  0
)  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) ) )  ->  <" X ">  e. Word  (Vtx `  G )
)
7 nn0p1gt0 11322 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  0  < 
( N  +  1 ) )
87adantr 481 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  X  e.  (Vtx `  G
) )  ->  0  <  ( N  +  1 ) )
98adantl 482 . . . . . . . . 9  |-  ( ( ( lastS  `  W )  =/=  ( W `  0
)  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  0  <  ( N  +  1 ) )
109adantl 482 . . . . . . . 8  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  (
( lastS  `  W )  =/=  ( W `  0
)  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) ) )  -> 
0  <  ( N  +  1 ) )
11 breq2 4657 . . . . . . . . . 10  |-  ( (
# `  W )  =  ( N  + 
1 )  ->  (
0  <  ( # `  W
)  <->  0  <  ( N  +  1 ) ) )
1211adantl 482 . . . . . . . . 9  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  ->  (
0  <  ( # `  W
)  <->  0  <  ( N  +  1 ) ) )
1312adantr 481 . . . . . . . 8  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  (
( lastS  `  W )  =/=  ( W `  0
)  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) ) )  -> 
( 0  <  ( # `
 W )  <->  0  <  ( N  +  1 ) ) )
1410, 13mpbird 247 . . . . . . 7  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  (
( lastS  `  W )  =/=  ( W `  0
)  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) ) )  -> 
0  <  ( # `  W
) )
15 ccatfv0 13367 . . . . . . 7  |-  ( ( W  e. Word  (Vtx `  G )  /\  <" X ">  e. Word  (Vtx
`  G )  /\  0  <  ( # `  W
) )  ->  (
( W ++  <" X "> ) `  0
)  =  ( W `
 0 ) )
162, 6, 14, 15syl3anc 1326 . . . . . 6  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  (
( lastS  `  W )  =/=  ( W `  0
)  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) ) )  -> 
( ( W ++  <" X "> ) `  0 )  =  ( W `  0
) )
17 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( (
# `  W )  =  ( N  + 
1 )  ->  (
( # `  W )  -  1 )  =  ( ( N  + 
1 )  -  1 ) )
1817adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  ->  (
( # `  W )  -  1 )  =  ( ( N  + 
1 )  -  1 ) )
1918adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  (
( # `  W )  -  1 )  =  ( ( N  + 
1 )  -  1 ) )
20 nn0cn 11302 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  N  e.  CC )
21 pncan1 10454 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  CC  ->  (
( N  +  1 )  -  1 )  =  N )
2220, 21syl 17 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
2322adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  X  e.  (Vtx `  G
) )  ->  (
( N  +  1 )  -  1 )  =  N )
2423adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  (
( N  +  1 )  -  1 )  =  N )
2519, 24eqtr2d 2657 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  N  =  ( ( # `  W )  -  1 ) )
2625fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  (
( W ++  <" X "> ) `  N
)  =  ( ( W ++  <" X "> ) `  ( (
# `  W )  -  1 ) ) )
27 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  W  e. Word  (Vtx `  G )
)
284adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  <" X ">  e. Word  (Vtx `  G
) )
298adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  0  <  ( N  +  1 ) )
3012adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  (
0  <  ( # `  W
)  <->  0  <  ( N  +  1 ) ) )
3129, 30mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  0  <  ( # `  W
) )
32 hashneq0 13155 . . . . . . . . . . . . . . . . 17  |-  ( W  e. Word  (Vtx `  G
)  ->  ( 0  <  ( # `  W
)  <->  W  =/=  (/) ) )
3332bicomd 213 . . . . . . . . . . . . . . . 16  |-  ( W  e. Word  (Vtx `  G
)  ->  ( W  =/=  (/)  <->  0  <  ( # `
 W ) ) )
3433adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  ->  ( W  =/=  (/)  <->  0  <  ( # `
 W ) ) )
3534adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  ( W  =/=  (/)  <->  0  <  ( # `
 W ) ) )
3631, 35mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  W  =/=  (/) )
37 ccatval1lsw 13368 . . . . . . . . . . . . 13  |-  ( ( W  e. Word  (Vtx `  G )  /\  <" X ">  e. Word  (Vtx
`  G )  /\  W  =/=  (/) )  ->  (
( W ++  <" X "> ) `  (
( # `  W )  -  1 ) )  =  ( lastS  `  W
) )
3827, 28, 36, 37syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  (
( W ++  <" X "> ) `  (
( # `  W )  -  1 ) )  =  ( lastS  `  W
) )
3926, 38eqtr2d 2657 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  ( lastS  `  W )  =  ( ( W ++  <" X "> ) `  N
) )
4039neeq1d 2853 . . . . . . . . . 10  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  (
( lastS  `  W )  =/=  ( W `  0
)  <->  ( ( W ++ 
<" X "> ) `  N )  =/=  ( W `  0
) ) )
4140biimpd 219 . . . . . . . . 9  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) )  ->  (
( lastS  `  W )  =/=  ( W `  0
)  ->  ( ( W ++  <" X "> ) `  N )  =/=  ( W ` 
0 ) ) )
4241ex 450 . . . . . . . 8  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  ->  (
( N  e.  NN0  /\  X  e.  (Vtx `  G ) )  -> 
( ( lastS  `  W
)  =/=  ( W `
 0 )  -> 
( ( W ++  <" X "> ) `  N )  =/=  ( W `  0 )
) ) )
4342com23 86 . . . . . . 7  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  ->  (
( lastS  `  W )  =/=  ( W `  0
)  ->  ( ( N  e.  NN0  /\  X  e.  (Vtx `  G )
)  ->  ( ( W ++  <" X "> ) `  N )  =/=  ( W ` 
0 ) ) ) )
4443imp32 449 . . . . . 6  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  (
( lastS  `  W )  =/=  ( W `  0
)  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) ) )  -> 
( ( W ++  <" X "> ) `  N )  =/=  ( W `  0 )
)
4516, 44jca 554 . . . . 5  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  /\  (
( lastS  `  W )  =/=  ( W `  0
)  /\  ( N  e.  NN0  /\  X  e.  (Vtx `  G )
) ) )  -> 
( ( ( W ++ 
<" X "> ) `  0 )  =  ( W ` 
0 )  /\  (
( W ++  <" X "> ) `  N
)  =/=  ( W `
 0 ) ) )
4645exp32 631 . . . 4  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( N  +  1 ) )  ->  (
( lastS  `  W )  =/=  ( W `  0
)  ->  ( ( N  e.  NN0  /\  X  e.  (Vtx `  G )
)  ->  ( (
( W ++  <" X "> ) `  0
)  =  ( W `
 0 )  /\  ( ( W ++  <" X "> ) `  N )  =/=  ( W `  0 )
) ) ) )
471, 46syl 17 . . 3  |-  ( W  e.  ( N WWalksN  G
)  ->  ( ( lastS  `  W )  =/=  ( W `  0 )  ->  ( ( N  e. 
NN0  /\  X  e.  (Vtx `  G ) )  ->  ( ( ( W ++  <" X "> ) `  0 )  =  ( W ` 
0 )  /\  (
( W ++  <" X "> ) `  N
)  =/=  ( W `
 0 ) ) ) ) )
4847imp 445 . 2  |-  ( ( W  e.  ( N WWalksN  G )  /\  ( lastS  `  W )  =/=  ( W `  0 )
)  ->  ( ( N  e.  NN0  /\  X  e.  (Vtx `  G )
)  ->  ( (
( W ++  <" X "> ) `  0
)  =  ( W `
 0 )  /\  ( ( W ++  <" X "> ) `  N )  =/=  ( W `  0 )
) ) )
4948impcom 446 1  |-  ( ( ( N  e.  NN0  /\  X  e.  (Vtx `  G ) )  /\  ( W  e.  ( N WWalksN  G )  /\  ( lastS  `  W )  =/=  ( W `  0 )
) )  ->  (
( ( W ++  <" X "> ) `  0 )  =  ( W `  0
)  /\  ( ( W ++  <" X "> ) `  N )  =/=  ( W ` 
0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   NN0cn0 11292   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294  Vtxcvtx 25874   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  numclwwlk2lem1  27235
  Copyright terms: Public domain W3C validator