MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crreczi Structured version   Visualization version   Unicode version

Theorem crreczi 12989
Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in [Apostol] p. 361. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Jeff Hankins, 16-Dec-2013.)
Hypotheses
Ref Expression
crrecz.1  |-  A  e.  RR
crrecz.2  |-  B  e.  RR
Assertion
Ref Expression
crreczi  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( 1  / 
( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )

Proof of Theorem crreczi
StepHypRef Expression
1 crrecz.1 . . . . . . . 8  |-  A  e.  RR
21recni 10052 . . . . . . 7  |-  A  e.  CC
32sqcli 12944 . . . . . 6  |-  ( A ^ 2 )  e.  CC
4 ax-icn 9995 . . . . . . . 8  |-  _i  e.  CC
5 crrecz.2 . . . . . . . . 9  |-  B  e.  RR
65recni 10052 . . . . . . . 8  |-  B  e.  CC
74, 6mulcli 10045 . . . . . . 7  |-  ( _i  x.  B )  e.  CC
87sqcli 12944 . . . . . 6  |-  ( ( _i  x.  B ) ^ 2 )  e.  CC
93, 8negsubi 10359 . . . . 5  |-  ( ( A ^ 2 )  +  -u ( ( _i  x.  B ) ^
2 ) )  =  ( ( A ^
2 )  -  (
( _i  x.  B
) ^ 2 ) )
104, 6sqmuli 12947 . . . . . . . . 9  |-  ( ( _i  x.  B ) ^ 2 )  =  ( ( _i ^
2 )  x.  ( B ^ 2 ) )
11 i2 12965 . . . . . . . . . 10  |-  ( _i
^ 2 )  = 
-u 1
1211oveq1i 6660 . . . . . . . . 9  |-  ( ( _i ^ 2 )  x.  ( B ^
2 ) )  =  ( -u 1  x.  ( B ^ 2 ) )
13 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
146sqcli 12944 . . . . . . . . . 10  |-  ( B ^ 2 )  e.  CC
1513, 14mulneg1i 10476 . . . . . . . . 9  |-  ( -u
1  x.  ( B ^ 2 ) )  =  -u ( 1  x.  ( B ^ 2 ) )
1610, 12, 153eqtri 2648 . . . . . . . 8  |-  ( ( _i  x.  B ) ^ 2 )  = 
-u ( 1  x.  ( B ^ 2 ) )
1716negeqi 10274 . . . . . . 7  |-  -u (
( _i  x.  B
) ^ 2 )  =  -u -u ( 1  x.  ( B ^ 2 ) )
1813, 14mulcli 10045 . . . . . . . 8  |-  ( 1  x.  ( B ^
2 ) )  e.  CC
1918negnegi 10351 . . . . . . 7  |-  -u -u (
1  x.  ( B ^ 2 ) )  =  ( 1  x.  ( B ^ 2 ) )
2014mulid2i 10043 . . . . . . 7  |-  ( 1  x.  ( B ^
2 ) )  =  ( B ^ 2 )
2117, 19, 203eqtri 2648 . . . . . 6  |-  -u (
( _i  x.  B
) ^ 2 )  =  ( B ^
2 )
2221oveq2i 6661 . . . . 5  |-  ( ( A ^ 2 )  +  -u ( ( _i  x.  B ) ^
2 ) )  =  ( ( A ^
2 )  +  ( B ^ 2 ) )
232, 7subsqi 12975 . . . . 5  |-  ( ( A ^ 2 )  -  ( ( _i  x.  B ) ^
2 ) )  =  ( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )
249, 22, 233eqtr3ri 2653 . . . 4  |-  ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B
) ) )  =  ( ( A ^
2 )  +  ( B ^ 2 ) )
2524oveq1i 6660 . . 3  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B ) ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )
26 neorian 2888 . . . . 5  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <->  -.  ( A  =  0  /\  B  =  0 ) )
27 sumsqeq0 12942 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0 ) )
281, 5, 27mp2an 708 . . . . . 6  |-  ( ( A  =  0  /\  B  =  0 )  <-> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  0 )
2928necon3bbii 2841 . . . . 5  |-  ( -.  ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0
)
3026, 29bitri 264 . . . 4  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <-> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =/=  0 )
312, 7addcli 10044 . . . . 5  |-  ( A  +  ( _i  x.  B ) )  e.  CC
322, 7subcli 10357 . . . . 5  |-  ( A  -  ( _i  x.  B ) )  e.  CC
333, 14addcli 10044 . . . . 5  |-  ( ( A ^ 2 )  +  ( B ^
2 ) )  e.  CC
3431, 32, 33divasszi 10775 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( A  +  ( _i  x.  B
) )  x.  (
( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) ) )
3530, 34sylbi 207 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B
) ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) ) )
36 divid 10714 . . . . 5  |-  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  CC  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =/=  0 )  ->  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  1 )
3733, 36mpan 706 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) )  =  1 )
3830, 37sylbi 207 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  1 )
3925, 35, 383eqtr3a 2680 . 2  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 )
4032, 33divclzi 10760 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) )  e.  CC )
4130, 40sylbi 207 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  e.  CC )
4231a1i 11 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
43 crne0 11013 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =/=  0  \/  B  =/=  0 )  <->  ( A  +  ( _i  x.  B ) )  =/=  0 ) )
441, 5, 43mp2an 708 . . . 4  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <-> 
( A  +  ( _i  x.  B ) )  =/=  0 )
4544biimpi 206 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( A  +  ( _i  x.  B
) )  =/=  0
)
46 divmul 10688 . . . 4  |-  ( ( 1  e.  CC  /\  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  e.  CC  /\  ( ( A  +  ( _i  x.  B
) )  e.  CC  /\  ( A  +  ( _i  x.  B ) )  =/=  0 ) )  ->  ( (
1  /  ( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4713, 46mp3an1 1411 . . 3  |-  ( ( ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  e.  CC  /\  ( ( A  +  ( _i  x.  B
) )  e.  CC  /\  ( A  +  ( _i  x.  B ) )  =/=  0 ) )  ->  ( (
1  /  ( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4841, 42, 45, 47syl12anc 1324 . 2  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( 1  /  ( A  +  ( _i  x.  B
) ) )  =  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4939, 48mpbird 247 1  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( 1  / 
( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator