MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgcl Structured version   Visualization version   Unicode version

Theorem cycsubgcl 17620
Description: The set of integer powers of an element  A of a group forms a subgroup containing  A, called the cyclic group generated by the element  A. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cycsubg.x  |-  X  =  ( Base `  G
)
cycsubg.t  |-  .x.  =  (.g
`  G )
cycsubg.f  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
Assertion
Ref Expression
cycsubgcl  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ran  F  e.  (SubGrp `  G )  /\  A  e.  ran  F ) )
Distinct variable groups:    x, A    x, G    x,  .x.    x, X
Allowed substitution hint:    F( x)

Proof of Theorem cycsubgcl
Dummy variables  m  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubg.x . . . . . . . 8  |-  X  =  ( Base `  G
)
2 cycsubg.t . . . . . . . 8  |-  .x.  =  (.g
`  G )
31, 2mulgcl 17559 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ZZ  /\  A  e.  X )  ->  (
x  .x.  A )  e.  X )
433expa 1265 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  x  e.  ZZ )  /\  A  e.  X
)  ->  ( x  .x.  A )  e.  X
)
54an32s 846 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  ZZ )  ->  ( x  .x.  A )  e.  X
)
6 cycsubg.f . . . . 5  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
75, 6fmptd 6385 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F : ZZ --> X )
8 frn 6053 . . . 4  |-  ( F : ZZ --> X  ->  ran  F  C_  X )
97, 8syl 17 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ran  F  C_  X
)
10 1z 11407 . . . . . . 7  |-  1  e.  ZZ
11 oveq1 6657 . . . . . . . 8  |-  ( x  =  1  ->  (
x  .x.  A )  =  ( 1  .x. 
A ) )
12 ovex 6678 . . . . . . . 8  |-  ( 1 
.x.  A )  e. 
_V
1311, 6, 12fvmpt 6282 . . . . . . 7  |-  ( 1  e.  ZZ  ->  ( F `  1 )  =  ( 1  .x. 
A ) )
1410, 13ax-mp 5 . . . . . 6  |-  ( F `
 1 )  =  ( 1  .x.  A
)
151, 2mulg1 17548 . . . . . . 7  |-  ( A  e.  X  ->  (
1  .x.  A )  =  A )
1615adantl 482 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( 1  .x.  A
)  =  A )
1714, 16syl5eq 2668 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  1
)  =  A )
18 ffn 6045 . . . . . . 7  |-  ( F : ZZ --> X  ->  F  Fn  ZZ )
197, 18syl 17 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F  Fn  ZZ )
20 fnfvelrn 6356 . . . . . 6  |-  ( ( F  Fn  ZZ  /\  1  e.  ZZ )  ->  ( F `  1
)  e.  ran  F
)
2119, 10, 20sylancl 694 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  1
)  e.  ran  F
)
2217, 21eqeltrrd 2702 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  A  e.  ran  F
)
23 ne0i 3921 . . . 4  |-  ( A  e.  ran  F  ->  ran  F  =/=  (/) )
2422, 23syl 17 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ran  F  =/=  (/) )
25 df-3an 1039 . . . . . . . . . . . . 13  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ  /\  A  e.  X )  <->  ( (
m  e.  ZZ  /\  n  e.  ZZ )  /\  A  e.  X
) )
26 eqid 2622 . . . . . . . . . . . . . 14  |-  ( +g  `  G )  =  ( +g  `  G )
271, 2, 26mulgdir 17573 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( m  e.  ZZ  /\  n  e.  ZZ  /\  A  e.  X )
)  ->  ( (
m  +  n ) 
.x.  A )  =  ( ( m  .x.  A ) ( +g  `  G ) ( n 
.x.  A ) ) )
2825, 27sylan2br 493 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( ( m  e.  ZZ  /\  n  e.  ZZ )  /\  A  e.  X ) )  -> 
( ( m  +  n )  .x.  A
)  =  ( ( m  .x.  A ) ( +g  `  G
) ( n  .x.  A ) ) )
2928anass1rs 849 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( ( m  +  n )  .x.  A
)  =  ( ( m  .x.  A ) ( +g  `  G
) ( n  .x.  A ) ) )
30 zaddcl 11417 . . . . . . . . . . . . 13  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  ( m  +  n
)  e.  ZZ )
3130adantl 482 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( m  +  n
)  e.  ZZ )
32 oveq1 6657 . . . . . . . . . . . . 13  |-  ( x  =  ( m  +  n )  ->  (
x  .x.  A )  =  ( ( m  +  n )  .x.  A ) )
33 ovex 6678 . . . . . . . . . . . . 13  |-  ( ( m  +  n ) 
.x.  A )  e. 
_V
3432, 6, 33fvmpt 6282 . . . . . . . . . . . 12  |-  ( ( m  +  n )  e.  ZZ  ->  ( F `  ( m  +  n ) )  =  ( ( m  +  n )  .x.  A
) )
3531, 34syl 17 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( F `  (
m  +  n ) )  =  ( ( m  +  n ) 
.x.  A ) )
36 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( x  =  m  ->  (
x  .x.  A )  =  ( m  .x.  A ) )
37 ovex 6678 . . . . . . . . . . . . . 14  |-  ( m 
.x.  A )  e. 
_V
3836, 6, 37fvmpt 6282 . . . . . . . . . . . . 13  |-  ( m  e.  ZZ  ->  ( F `  m )  =  ( m  .x.  A ) )
3938ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( F `  m
)  =  ( m 
.x.  A ) )
40 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( x  =  n  ->  (
x  .x.  A )  =  ( n  .x.  A ) )
41 ovex 6678 . . . . . . . . . . . . . 14  |-  ( n 
.x.  A )  e. 
_V
4240, 6, 41fvmpt 6282 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  ( F `  n )  =  ( n  .x.  A ) )
4342ad2antll 765 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( F `  n
)  =  ( n 
.x.  A ) )
4439, 43oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( ( F `  m ) ( +g  `  G ) ( F `
 n ) )  =  ( ( m 
.x.  A ) ( +g  `  G ) ( n  .x.  A
) ) )
4529, 35, 443eqtr4d 2666 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( F `  (
m  +  n ) )  =  ( ( F `  m ) ( +g  `  G
) ( F `  n ) ) )
46 fnfvelrn 6356 . . . . . . . . . . 11  |-  ( ( F  Fn  ZZ  /\  ( m  +  n
)  e.  ZZ )  ->  ( F `  ( m  +  n
) )  e.  ran  F )
4719, 30, 46syl2an 494 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( F `  (
m  +  n ) )  e.  ran  F
)
4845, 47eqeltrrd 2702 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( ( F `  m ) ( +g  `  G ) ( F `
 n ) )  e.  ran  F )
4948anassrs 680 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( F `  m
) ( +g  `  G
) ( F `  n ) )  e. 
ran  F )
5049ralrimiva 2966 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  A. n  e.  ZZ  ( ( F `  m ) ( +g  `  G ) ( F `
 n ) )  e.  ran  F )
51 oveq2 6658 . . . . . . . . . . 11  |-  ( v  =  ( F `  n )  ->  (
( F `  m
) ( +g  `  G
) v )  =  ( ( F `  m ) ( +g  `  G ) ( F `
 n ) ) )
5251eleq1d 2686 . . . . . . . . . 10  |-  ( v  =  ( F `  n )  ->  (
( ( F `  m ) ( +g  `  G ) v )  e.  ran  F  <->  ( ( F `  m )
( +g  `  G ) ( F `  n
) )  e.  ran  F ) )
5352ralrn 6362 . . . . . . . . 9  |-  ( F  Fn  ZZ  ->  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G ) v )  e.  ran  F  <->  A. n  e.  ZZ  ( ( F `
 m ) ( +g  `  G ) ( F `  n
) )  e.  ran  F ) )
5419, 53syl 17 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( A. v  e. 
ran  F ( ( F `  m ) ( +g  `  G
) v )  e. 
ran  F  <->  A. n  e.  ZZ  ( ( F `  m ) ( +g  `  G ) ( F `
 n ) )  e.  ran  F ) )
5554adantr 481 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G
) v )  e. 
ran  F  <->  A. n  e.  ZZ  ( ( F `  m ) ( +g  `  G ) ( F `
 n ) )  e.  ran  F ) )
5650, 55mpbird 247 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  A. v  e.  ran  F ( ( F `  m ) ( +g  `  G ) v )  e.  ran  F )
57 eqid 2622 . . . . . . . . . . 11  |-  ( invg `  G )  =  ( invg `  G )
581, 2, 57mulgneg 17560 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  m  e.  ZZ  /\  A  e.  X )  ->  ( -u m  .x.  A )  =  ( ( invg `  G ) `
 ( m  .x.  A ) ) )
59583expa 1265 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  m  e.  ZZ )  /\  A  e.  X
)  ->  ( -u m  .x.  A )  =  ( ( invg `  G ) `  (
m  .x.  A )
) )
6059an32s 846 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( -u m  .x.  A )  =  ( ( invg `  G ) `  (
m  .x.  A )
) )
61 znegcl 11412 . . . . . . . . . 10  |-  ( m  e.  ZZ  ->  -u m  e.  ZZ )
6261adantl 482 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  -u m  e.  ZZ )
63 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  -u m  ->  (
x  .x.  A )  =  ( -u m  .x.  A ) )
64 ovex 6678 . . . . . . . . . 10  |-  ( -u m  .x.  A )  e. 
_V
6563, 6, 64fvmpt 6282 . . . . . . . . 9  |-  ( -u m  e.  ZZ  ->  ( F `  -u m
)  =  ( -u m  .x.  A ) )
6662, 65syl 17 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( F `  -u m )  =  (
-u m  .x.  A
) )
6738adantl 482 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( F `  m )  =  ( m  .x.  A ) )
6867fveq2d 6195 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( ( invg `  G ) `
 ( F `  m ) )  =  ( ( invg `  G ) `  (
m  .x.  A )
) )
6960, 66, 683eqtr4d 2666 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( F `  -u m )  =  ( ( invg `  G ) `  ( F `  m )
) )
70 fnfvelrn 6356 . . . . . . . 8  |-  ( ( F  Fn  ZZ  /\  -u m  e.  ZZ )  ->  ( F `  -u m )  e.  ran  F )
7119, 61, 70syl2an 494 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( F `  -u m )  e.  ran  F )
7269, 71eqeltrrd 2702 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( ( invg `  G ) `
 ( F `  m ) )  e. 
ran  F )
7356, 72jca 554 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G
) v )  e. 
ran  F  /\  (
( invg `  G ) `  ( F `  m )
)  e.  ran  F
) )
7473ralrimiva 2966 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  A. m  e.  ZZ  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G ) v )  e.  ran  F  /\  ( ( invg `  G ) `  ( F `  m )
)  e.  ran  F
) )
75 oveq1 6657 . . . . . . . . 9  |-  ( u  =  ( F `  m )  ->  (
u ( +g  `  G
) v )  =  ( ( F `  m ) ( +g  `  G ) v ) )
7675eleq1d 2686 . . . . . . . 8  |-  ( u  =  ( F `  m )  ->  (
( u ( +g  `  G ) v )  e.  ran  F  <->  ( ( F `  m )
( +g  `  G ) v )  e.  ran  F ) )
7776ralbidv 2986 . . . . . . 7  |-  ( u  =  ( F `  m )  ->  ( A. v  e.  ran  F ( u ( +g  `  G ) v )  e.  ran  F  <->  A. v  e.  ran  F ( ( F `  m ) ( +g  `  G
) v )  e. 
ran  F ) )
78 fveq2 6191 . . . . . . . 8  |-  ( u  =  ( F `  m )  ->  (
( invg `  G ) `  u
)  =  ( ( invg `  G
) `  ( F `  m ) ) )
7978eleq1d 2686 . . . . . . 7  |-  ( u  =  ( F `  m )  ->  (
( ( invg `  G ) `  u
)  e.  ran  F  <->  ( ( invg `  G ) `  ( F `  m )
)  e.  ran  F
) )
8077, 79anbi12d 747 . . . . . 6  |-  ( u  =  ( F `  m )  ->  (
( A. v  e. 
ran  F ( u ( +g  `  G
) v )  e. 
ran  F  /\  (
( invg `  G ) `  u
)  e.  ran  F
)  <->  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G
) v )  e. 
ran  F  /\  (
( invg `  G ) `  ( F `  m )
)  e.  ran  F
) ) )
8180ralrn 6362 . . . . 5  |-  ( F  Fn  ZZ  ->  ( A. u  e.  ran  F ( A. v  e. 
ran  F ( u ( +g  `  G
) v )  e. 
ran  F  /\  (
( invg `  G ) `  u
)  e.  ran  F
)  <->  A. m  e.  ZZ  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G ) v )  e.  ran  F  /\  ( ( invg `  G ) `  ( F `  m )
)  e.  ran  F
) ) )
8219, 81syl 17 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( A. u  e. 
ran  F ( A. v  e.  ran  F ( u ( +g  `  G
) v )  e. 
ran  F  /\  (
( invg `  G ) `  u
)  e.  ran  F
)  <->  A. m  e.  ZZ  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G ) v )  e.  ran  F  /\  ( ( invg `  G ) `  ( F `  m )
)  e.  ran  F
) ) )
8374, 82mpbird 247 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  A. u  e.  ran  F ( A. v  e. 
ran  F ( u ( +g  `  G
) v )  e. 
ran  F  /\  (
( invg `  G ) `  u
)  e.  ran  F
) )
841, 26, 57issubg2 17609 . . . 4  |-  ( G  e.  Grp  ->  ( ran  F  e.  (SubGrp `  G )  <->  ( ran  F 
C_  X  /\  ran  F  =/=  (/)  /\  A. u  e.  ran  F ( A. v  e.  ran  F ( u ( +g  `  G
) v )  e. 
ran  F  /\  (
( invg `  G ) `  u
)  e.  ran  F
) ) ) )
8584adantr 481 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ran  F  e.  (SubGrp `  G )  <->  ( ran  F  C_  X  /\  ran  F  =/=  (/)  /\  A. u  e.  ran  F ( A. v  e.  ran  F ( u ( +g  `  G ) v )  e.  ran  F  /\  ( ( invg `  G ) `  u
)  e.  ran  F
) ) ) )
869, 24, 83, 85mpbir3and 1245 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ran  F  e.  (SubGrp `  G ) )
8786, 22jca 554 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ran  F  e.  (SubGrp `  G )  /\  A  e.  ran  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939   -ucneg 10267   ZZcz 11377   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422   invgcminusg 17423  .gcmg 17540  SubGrpcsubg 17588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591
This theorem is referenced by:  cycsubg  17622  oddvds2  17983  cycsubgcyg  18302
  Copyright terms: Public domain W3C validator