Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffrege76 Structured version   Visualization version   Unicode version

Theorem dffrege76 38233
Description: If from the two propositions that every result of an application of the procedure  R to  B has property  f and that property  f is hereditary in the  R-sequence, it can be inferred, whatever  f may be, that  E has property  f, then we say  E follows  B in the  R-sequence. Definition 76 of [Frege1879] p. 60.

Each of  B,  E and  R must be sets. (Contributed by RP, 2-Jul-2020.)

Hypotheses
Ref Expression
frege76.b  |-  B  e.  U
frege76.e  |-  E  e.  V
frege76.r  |-  R  e.  W
Assertion
Ref Expression
dffrege76  |-  ( A. f ( R hereditary  f  -> 
( A. a ( B R a  -> 
a  e.  f )  ->  E  e.  f ) )  <->  B (
t+ `  R
) E )
Distinct variable groups:    f, a, B    f, E    R, a,
f    U, f    f, V   
f, W
Allowed substitution hints:    U( a)    E( a)    V( a)    W( a)

Proof of Theorem dffrege76
StepHypRef Expression
1 frege76.b . . 3  |-  B  e.  U
2 frege76.e . . 3  |-  E  e.  V
3 frege76.r . . 3  |-  R  e.  W
4 brtrclfv2 38019 . . 3  |-  ( ( B  e.  U  /\  E  e.  V  /\  R  e.  W )  ->  ( B ( t+ `  R ) E  <->  E  e.  |^| { f  |  ( R "
( { B }  u.  f ) )  C_  f } ) )
51, 2, 3, 4mp3an 1424 . 2  |-  ( B ( t+ `  R ) E  <->  E  e.  |^|
{ f  |  ( R " ( { B }  u.  f
) )  C_  f } )
62elexi 3213 . . 3  |-  E  e. 
_V
76elintab 4487 . 2  |-  ( E  e.  |^| { f  |  ( R " ( { B }  u.  f
) )  C_  f } 
<-> 
A. f ( ( R " ( { B }  u.  f
) )  C_  f  ->  E  e.  f ) )
8 imaundi 5545 . . . . . . . . 9  |-  ( R
" ( { B }  u.  f )
)  =  ( ( R " { B } )  u.  ( R " f ) )
98equncomi 3759 . . . . . . . 8  |-  ( R
" ( { B }  u.  f )
)  =  ( ( R " f )  u.  ( R " { B } ) )
109sseq1i 3629 . . . . . . 7  |-  ( ( R " ( { B }  u.  f
) )  C_  f  <->  ( ( R " f
)  u.  ( R
" { B }
) )  C_  f
)
11 unss 3787 . . . . . . 7  |-  ( ( ( R " f
)  C_  f  /\  ( R " { B } )  C_  f
)  <->  ( ( R
" f )  u.  ( R " { B } ) )  C_  f )
1210, 11bitr4i 267 . . . . . 6  |-  ( ( R " ( { B }  u.  f
) )  C_  f  <->  ( ( R " f
)  C_  f  /\  ( R " { B } )  C_  f
) )
13 df-he 38067 . . . . . . . 8  |-  ( R hereditary  f 
<->  ( R " f
)  C_  f )
1413bicomi 214 . . . . . . 7  |-  ( ( R " f ) 
C_  f  <->  R hereditary  f )
15 dfss2 3591 . . . . . . . 8  |-  ( ( R " { B } )  C_  f  <->  A. a ( a  e.  ( R " { B } )  ->  a  e.  f ) )
161elexi 3213 . . . . . . . . . . . 12  |-  B  e. 
_V
17 vex 3203 . . . . . . . . . . . 12  |-  a  e. 
_V
1816, 17elimasn 5490 . . . . . . . . . . 11  |-  ( a  e.  ( R " { B } )  <->  <. B , 
a >.  e.  R )
19 df-br 4654 . . . . . . . . . . 11  |-  ( B R a  <->  <. B , 
a >.  e.  R )
2018, 19bitr4i 267 . . . . . . . . . 10  |-  ( a  e.  ( R " { B } )  <->  B R
a )
2120imbi1i 339 . . . . . . . . 9  |-  ( ( a  e.  ( R
" { B }
)  ->  a  e.  f )  <->  ( B R a  ->  a  e.  f ) )
2221albii 1747 . . . . . . . 8  |-  ( A. a ( a  e.  ( R " { B } )  ->  a  e.  f )  <->  A. a
( B R a  ->  a  e.  f ) )
2315, 22bitri 264 . . . . . . 7  |-  ( ( R " { B } )  C_  f  <->  A. a ( B R a  ->  a  e.  f ) )
2414, 23anbi12i 733 . . . . . 6  |-  ( ( ( R " f
)  C_  f  /\  ( R " { B } )  C_  f
)  <->  ( R hereditary  f  /\  A. a ( B R a  ->  a  e.  f ) ) )
2512, 24bitri 264 . . . . 5  |-  ( ( R " ( { B }  u.  f
) )  C_  f  <->  ( R hereditary  f  /\  A. a
( B R a  ->  a  e.  f ) ) )
2625imbi1i 339 . . . 4  |-  ( ( ( R " ( { B }  u.  f
) )  C_  f  ->  E  e.  f )  <-> 
( ( R hereditary  f  /\  A. a ( B R a  ->  a  e.  f ) )  ->  E  e.  f )
)
27 impexp 462 . . . 4  |-  ( ( ( R hereditary  f  /\  A. a ( B R a  ->  a  e.  f ) )  ->  E  e.  f )  <->  ( R hereditary  f  ->  ( A. a ( B R a  ->  a  e.  f )  ->  E  e.  f ) ) )
2826, 27bitri 264 . . 3  |-  ( ( ( R " ( { B }  u.  f
) )  C_  f  ->  E  e.  f )  <-> 
( R hereditary  f  ->  ( A. a ( B R a  ->  a  e.  f )  ->  E  e.  f ) ) )
2928albii 1747 . 2  |-  ( A. f ( ( R
" ( { B }  u.  f )
)  C_  f  ->  E  e.  f )  <->  A. f
( R hereditary  f  ->  ( A. a ( B R a  ->  a  e.  f )  ->  E  e.  f ) ) )
305, 7, 293bitrri 287 1  |-  ( A. f ( R hereditary  f  -> 
( A. a ( B R a  -> 
a  e.  f )  ->  E  e.  f ) )  <->  B (
t+ `  R
) E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990   {cab 2608    u. cun 3572    C_ wss 3574   {csn 4177   <.cop 4183   |^|cint 4475   class class class wbr 4653   "cima 5117   ` cfv 5888   t+ctcl 13724   hereditary whe 38066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-trcl 13726  df-relexp 13761  df-he 38067
This theorem is referenced by:  frege77  38234  frege89  38246
  Copyright terms: Public domain W3C validator