MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem5 Structured version   Visualization version   Unicode version

Theorem divalglem5 15120
Description: Lemma for divalg 15126. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1  |-  N  e.  ZZ
divalglem0.2  |-  D  e.  ZZ
divalglem1.3  |-  D  =/=  0
divalglem2.4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
divalglem5.5  |-  R  = inf ( S ,  RR ,  <  )
Assertion
Ref Expression
divalglem5  |-  ( 0  <_  R  /\  R  <  ( abs `  D
) )
Distinct variable groups:    D, r    N, r
Allowed substitution hints:    R( r)    S( r)

Proof of Theorem divalglem5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divalglem5.5 . . . . . 6  |-  R  = inf ( S ,  RR ,  <  )
2 divalglem0.1 . . . . . . 7  |-  N  e.  ZZ
3 divalglem0.2 . . . . . . 7  |-  D  e.  ZZ
4 divalglem1.3 . . . . . . 7  |-  D  =/=  0
5 divalglem2.4 . . . . . . 7  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
62, 3, 4, 5divalglem2 15118 . . . . . 6  |- inf ( S ,  RR ,  <  )  e.  S
71, 6eqeltri 2697 . . . . 5  |-  R  e.  S
8 oveq2 6658 . . . . . . 7  |-  ( x  =  R  ->  ( N  -  x )  =  ( N  -  R ) )
98breq2d 4665 . . . . . 6  |-  ( x  =  R  ->  ( D  ||  ( N  -  x )  <->  D  ||  ( N  -  R )
) )
10 oveq2 6658 . . . . . . . . 9  |-  ( r  =  x  ->  ( N  -  r )  =  ( N  -  x ) )
1110breq2d 4665 . . . . . . . 8  |-  ( r  =  x  ->  ( D  ||  ( N  -  r )  <->  D  ||  ( N  -  x )
) )
1211cbvrabv 3199 . . . . . . 7  |-  { r  e.  NN0  |  D  ||  ( N  -  r
) }  =  {
x  e.  NN0  |  D  ||  ( N  -  x ) }
135, 12eqtri 2644 . . . . . 6  |-  S  =  { x  e.  NN0  |  D  ||  ( N  -  x ) }
149, 13elrab2 3366 . . . . 5  |-  ( R  e.  S  <->  ( R  e.  NN0  /\  D  ||  ( N  -  R
) ) )
157, 14mpbi 220 . . . 4  |-  ( R  e.  NN0  /\  D  ||  ( N  -  R
) )
1615simpli 474 . . 3  |-  R  e. 
NN0
1716nn0ge0i 11320 . 2  |-  0  <_  R
18 nnabscl 14065 . . . . . . 7  |-  ( ( D  e.  ZZ  /\  D  =/=  0 )  -> 
( abs `  D
)  e.  NN )
193, 4, 18mp2an 708 . . . . . 6  |-  ( abs `  D )  e.  NN
2019nngt0i 11054 . . . . 5  |-  0  <  ( abs `  D
)
21 0re 10040 . . . . . 6  |-  0  e.  RR
22 zcn 11382 . . . . . . . 8  |-  ( D  e.  ZZ  ->  D  e.  CC )
233, 22ax-mp 5 . . . . . . 7  |-  D  e.  CC
2423abscli 14134 . . . . . 6  |-  ( abs `  D )  e.  RR
2521, 24ltnlei 10158 . . . . 5  |-  ( 0  <  ( abs `  D
)  <->  -.  ( abs `  D )  <_  0
)
2620, 25mpbi 220 . . . 4  |-  -.  ( abs `  D )  <_ 
0
27 ssrab2 3687 . . . . . . . . 9  |-  { r  e.  NN0  |  D  ||  ( N  -  r
) }  C_  NN0
285, 27eqsstri 3635 . . . . . . . 8  |-  S  C_  NN0
29 nn0uz 11722 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
3028, 29sseqtri 3637 . . . . . . 7  |-  S  C_  ( ZZ>= `  0 )
31 nn0abscl 14052 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  ( abs `  D )  e. 
NN0 )
323, 31ax-mp 5 . . . . . . . . 9  |-  ( abs `  D )  e.  NN0
33 nn0sub2 11438 . . . . . . . . 9  |-  ( ( ( abs `  D
)  e.  NN0  /\  R  e.  NN0  /\  ( abs `  D )  <_  R )  ->  ( R  -  ( abs `  D ) )  e. 
NN0 )
3432, 16, 33mp3an12 1414 . . . . . . . 8  |-  ( ( abs `  D )  <_  R  ->  ( R  -  ( abs `  D ) )  e. 
NN0 )
3515a1i 11 . . . . . . . . 9  |-  ( ( abs `  D )  <_  R  ->  ( R  e.  NN0  /\  D  ||  ( N  -  R
) ) )
36 nn0z 11400 . . . . . . . . . . 11  |-  ( R  e.  NN0  ->  R  e.  ZZ )
37 1z 11407 . . . . . . . . . . . . 13  |-  1  e.  ZZ
382, 3divalglem0 15116 . . . . . . . . . . . . 13  |-  ( ( R  e.  ZZ  /\  1  e.  ZZ )  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( 1  x.  ( abs `  D ) ) ) ) ) )
3937, 38mpan2 707 . . . . . . . . . . . 12  |-  ( R  e.  ZZ  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( 1  x.  ( abs `  D
) ) ) ) ) )
4024recni 10052 . . . . . . . . . . . . . . . 16  |-  ( abs `  D )  e.  CC
4140mulid2i 10043 . . . . . . . . . . . . . . 15  |-  ( 1  x.  ( abs `  D
) )  =  ( abs `  D )
4241oveq2i 6661 . . . . . . . . . . . . . 14  |-  ( R  -  ( 1  x.  ( abs `  D
) ) )  =  ( R  -  ( abs `  D ) )
4342oveq2i 6661 . . . . . . . . . . . . 13  |-  ( N  -  ( R  -  ( 1  x.  ( abs `  D ) ) ) )  =  ( N  -  ( R  -  ( abs `  D
) ) )
4443breq2i 4661 . . . . . . . . . . . 12  |-  ( D 
||  ( N  -  ( R  -  (
1  x.  ( abs `  D ) ) ) )  <->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) )
4539, 44syl6ib 241 . . . . . . . . . . 11  |-  ( R  e.  ZZ  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) ) )
4636, 45syl 17 . . . . . . . . . 10  |-  ( R  e.  NN0  ->  ( D 
||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) ) )
4746imp 445 . . . . . . . . 9  |-  ( ( R  e.  NN0  /\  D  ||  ( N  -  R ) )  ->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) )
4835, 47syl 17 . . . . . . . 8  |-  ( ( abs `  D )  <_  R  ->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) )
49 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  ( R  -  ( abs `  D ) )  ->  ( N  -  x )  =  ( N  -  ( R  -  ( abs `  D
) ) ) )
5049breq2d 4665 . . . . . . . . 9  |-  ( x  =  ( R  -  ( abs `  D ) )  ->  ( D  ||  ( N  -  x
)  <->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) ) )
5150, 13elrab2 3366 . . . . . . . 8  |-  ( ( R  -  ( abs `  D ) )  e.  S  <->  ( ( R  -  ( abs `  D
) )  e.  NN0  /\  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) ) )
5234, 48, 51sylanbrc 698 . . . . . . 7  |-  ( ( abs `  D )  <_  R  ->  ( R  -  ( abs `  D ) )  e.  S )
53 infssuzle 11771 . . . . . . 7  |-  ( ( S  C_  ( ZZ>= ` 
0 )  /\  ( R  -  ( abs `  D ) )  e.  S )  -> inf ( S ,  RR ,  <  )  <_  ( R  -  ( abs `  D ) ) )
5430, 52, 53sylancr 695 . . . . . 6  |-  ( ( abs `  D )  <_  R  -> inf ( S ,  RR ,  <  )  <_  ( R  -  ( abs `  D ) ) )
551, 54syl5eqbr 4688 . . . . 5  |-  ( ( abs `  D )  <_  R  ->  R  <_  ( R  -  ( abs `  D ) ) )
5635simpld 475 . . . . . . . 8  |-  ( ( abs `  D )  <_  R  ->  R  e.  NN0 )
57 nn0re 11301 . . . . . . . 8  |-  ( R  e.  NN0  ->  R  e.  RR )
5856, 57syl 17 . . . . . . 7  |-  ( ( abs `  D )  <_  R  ->  R  e.  RR )
59 lesub 10507 . . . . . . . 8  |-  ( ( R  e.  RR  /\  R  e.  RR  /\  ( abs `  D )  e.  RR )  ->  ( R  <_  ( R  -  ( abs `  D ) )  <->  ( abs `  D
)  <_  ( R  -  R ) ) )
6024, 59mp3an3 1413 . . . . . . 7  |-  ( ( R  e.  RR  /\  R  e.  RR )  ->  ( R  <_  ( R  -  ( abs `  D ) )  <->  ( abs `  D )  <_  ( R  -  R )
) )
6158, 58, 60syl2anc 693 . . . . . 6  |-  ( ( abs `  D )  <_  R  ->  ( R  <_  ( R  -  ( abs `  D ) )  <->  ( abs `  D
)  <_  ( R  -  R ) ) )
6258recnd 10068 . . . . . . . 8  |-  ( ( abs `  D )  <_  R  ->  R  e.  CC )
6362subidd 10380 . . . . . . 7  |-  ( ( abs `  D )  <_  R  ->  ( R  -  R )  =  0 )
6463breq2d 4665 . . . . . 6  |-  ( ( abs `  D )  <_  R  ->  (
( abs `  D
)  <_  ( R  -  R )  <->  ( abs `  D )  <_  0
) )
6561, 64bitrd 268 . . . . 5  |-  ( ( abs `  D )  <_  R  ->  ( R  <_  ( R  -  ( abs `  D ) )  <->  ( abs `  D
)  <_  0 ) )
6655, 65mpbid 222 . . . 4  |-  ( ( abs `  D )  <_  R  ->  ( abs `  D )  <_ 
0 )
6726, 66mto 188 . . 3  |-  -.  ( abs `  D )  <_  R
6816, 57ax-mp 5 . . . 4  |-  R  e.  RR
6968, 24ltnlei 10158 . . 3  |-  ( R  <  ( abs `  D
)  <->  -.  ( abs `  D )  <_  R
)
7067, 69mpbir 221 . 2  |-  R  < 
( abs `  D
)
7117, 70pm3.2i 471 1  |-  ( 0  <_  R  /\  R  <  ( abs `  D
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   abscabs 13974    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  divalglem9  15124
  Copyright terms: Public domain W3C validator