MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalg Structured version   Visualization version   Unicode version

Theorem divalg 15126
Description: The division algorithm (theorem). Dividing an integer  N by a nonzero integer  D produces a (unique) quotient  q and a unique remainder  0  <_  r  <  ( abs `  D
). Theorem 1.14 in [ApostolNT] p. 19. The proof does not use  /,  |_ or  mod. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divalg  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Distinct variable groups:    D, q,
r    N, q, r

Proof of Theorem divalg
StepHypRef Expression
1 eqeq1 2626 . . . . . 6  |-  ( N  =  if ( N  e.  ZZ ,  N ,  1 )  -> 
( N  =  ( ( q  x.  D
)  +  r )  <-> 
if ( N  e.  ZZ ,  N , 
1 )  =  ( ( q  x.  D
)  +  r ) ) )
213anbi3d 1405 . . . . 5  |-  ( N  =  if ( N  e.  ZZ ,  N ,  1 )  -> 
( ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  D )  +  r ) ) ) )
32rexbidv 3052 . . . 4  |-  ( N  =  if ( N  e.  ZZ ,  N ,  1 )  -> 
( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  D )  +  r ) ) ) )
43reubidv 3126 . . 3  |-  ( N  =  if ( N  e.  ZZ ,  N ,  1 )  -> 
( E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  D )  +  r ) ) ) )
5 fveq2 6191 . . . . . . 7  |-  ( D  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( abs `  D
)  =  ( abs `  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) ) )
65breq2d 4665 . . . . . 6  |-  ( D  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( r  < 
( abs `  D
)  <->  r  <  ( abs `  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) ) ) )
7 oveq2 6658 . . . . . . . 8  |-  ( D  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( q  x.  D )  =  ( q  x.  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) ) )
87oveq1d 6665 . . . . . . 7  |-  ( D  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( ( q  x.  D )  +  r )  =  ( ( q  x.  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) )  +  r ) )
98eqeq2d 2632 . . . . . 6  |-  ( D  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  D )  +  r )  <->  if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) )  +  r ) ) )
106, 93anbi23d 1402 . . . . 5  |-  ( D  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( ( 0  <_  r  /\  r  <  ( abs `  D
)  /\  if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  r  /\  r  <  ( abs `  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) )  /\  if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) )  +  r ) ) ) )
1110rexbidv 3052 . . . 4  |-  ( D  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  D )  +  r ) )  <->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) )  /\  if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) )  +  r ) ) ) )
1211reubidv 3126 . . 3  |-  ( D  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  D )  +  r ) )  <->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) )  /\  if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) )  +  r ) ) ) )
13 1z 11407 . . . . 5  |-  1  e.  ZZ
1413elimel 4150 . . . 4  |-  if ( N  e.  ZZ ,  N ,  1 )  e.  ZZ
15 simpl 473 . . . . 5  |-  ( ( D  e.  ZZ  /\  D  =/=  0 )  ->  D  e.  ZZ )
16 eleq1 2689 . . . . 5  |-  ( D  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( D  e.  ZZ  <->  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  e.  ZZ ) )
17 eleq1 2689 . . . . 5  |-  ( 1  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( 1  e.  ZZ  <->  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  e.  ZZ ) )
1815, 16, 17, 13elimdhyp 4151 . . . 4  |-  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  e.  ZZ
19 simpr 477 . . . . 5  |-  ( ( D  e.  ZZ  /\  D  =/=  0 )  ->  D  =/=  0 )
20 neeq1 2856 . . . . 5  |-  ( D  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( D  =/=  0  <->  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  =/=  0 ) )
21 neeq1 2856 . . . . 5  |-  ( 1  =  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ->  ( 1  =/=  0  <->  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  =/=  0 ) )
22 ax-1ne0 10005 . . . . 5  |-  1  =/=  0
2319, 20, 21, 22elimdhyp 4151 . . . 4  |-  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  =/=  0
24 eqid 2622 . . . 4  |-  { r  e.  NN0  |  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ||  ( if ( N  e.  ZZ ,  N , 
1 )  -  r
) }  =  {
r  e.  NN0  |  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 )  ||  ( if ( N  e.  ZZ ,  N , 
1 )  -  r
) }
2514, 18, 23, 24divalglem10 15125 . . 3  |-  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) )  /\  if ( N  e.  ZZ ,  N ,  1 )  =  ( ( q  x.  if ( ( D  e.  ZZ  /\  D  =/=  0 ) ,  D ,  1 ) )  +  r ) )
264, 12, 25dedth2h 4140 . 2  |-  ( ( N  e.  ZZ  /\  ( D  e.  ZZ  /\  D  =/=  0 ) )  ->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
27263impb 1260 1  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   E!wreu 2914   {crab 2916   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   NN0cn0 11292   ZZcz 11377   abscabs 13974    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  divalg2  15128
  Copyright terms: Public domain W3C validator