MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmelbas Structured version   Visualization version   Unicode version

Theorem dsmmelbas 20083
Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmelbas.p  |-  P  =  ( S X_s R )
dsmmelbas.c  |-  C  =  ( S  (+)m  R )
dsmmelbas.b  |-  B  =  ( Base `  P
)
dsmmelbas.h  |-  H  =  ( Base `  C
)
dsmmelbas.i  |-  ( ph  ->  I  e.  V )
dsmmelbas.r  |-  ( ph  ->  R  Fn  I )
Assertion
Ref Expression
dsmmelbas  |-  ( ph  ->  ( X  e.  H  <->  ( X  e.  B  /\  { a  e.  I  |  ( X `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin ) ) )
Distinct variable groups:    S, a    R, a    X, a    I, a
Allowed substitution hints:    ph( a)    B( a)    C( a)    P( a)    H( a)    V( a)

Proof of Theorem dsmmelbas
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 dsmmelbas.r . . . . . 6  |-  ( ph  ->  R  Fn  I )
2 dsmmelbas.i . . . . . 6  |-  ( ph  ->  I  e.  V )
3 fnex 6481 . . . . . 6  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  R  e.  _V )
41, 2, 3syl2anc 693 . . . . 5  |-  ( ph  ->  R  e.  _V )
5 eqid 2622 . . . . . 6  |-  { b  e.  ( Base `  ( S X_s R ) )  |  { a  e.  dom  R  |  ( b `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin }  =  { b  e.  (
Base `  ( S X_s R ) )  |  {
a  e.  dom  R  |  ( b `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin }
65dsmmbase 20079 . . . . 5  |-  ( R  e.  _V  ->  { b  e.  ( Base `  ( S X_s R ) )  |  { a  e.  dom  R  |  ( b `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin }  =  ( Base `  ( S  (+)m 
R ) ) )
74, 6syl 17 . . . 4  |-  ( ph  ->  { b  e.  (
Base `  ( S X_s R ) )  |  {
a  e.  dom  R  |  ( b `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin }  =  ( Base `  ( S  (+)m 
R ) ) )
8 dsmmelbas.h . . . . 5  |-  H  =  ( Base `  C
)
9 dsmmelbas.c . . . . . 6  |-  C  =  ( S  (+)m  R )
109fveq2i 6194 . . . . 5  |-  ( Base `  C )  =  (
Base `  ( S  (+)m 
R ) )
118, 10eqtri 2644 . . . 4  |-  H  =  ( Base `  ( S  (+)m  R ) )
127, 11syl6reqr 2675 . . 3  |-  ( ph  ->  H  =  { b  e.  ( Base `  ( S X_s R ) )  |  { a  e.  dom  R  |  ( b `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin } )
1312eleq2d 2687 . 2  |-  ( ph  ->  ( X  e.  H  <->  X  e.  { b  e.  ( Base `  ( S X_s R ) )  |  { a  e.  dom  R  |  ( b `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin } ) )
14 fveq1 6190 . . . . . . 7  |-  ( b  =  X  ->  (
b `  a )  =  ( X `  a ) )
1514neeq1d 2853 . . . . . 6  |-  ( b  =  X  ->  (
( b `  a
)  =/=  ( 0g
`  ( R `  a ) )  <->  ( X `  a )  =/=  ( 0g `  ( R `  a ) ) ) )
1615rabbidv 3189 . . . . 5  |-  ( b  =  X  ->  { a  e.  dom  R  | 
( b `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  =  { a  e. 
dom  R  |  ( X `  a )  =/=  ( 0g `  ( R `  a )
) } )
1716eleq1d 2686 . . . 4  |-  ( b  =  X  ->  ( { a  e.  dom  R  |  ( b `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin  <->  { a  e.  dom  R  |  ( X `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin ) )
1817elrab 3363 . . 3  |-  ( X  e.  { b  e.  ( Base `  ( S X_s R ) )  |  { a  e.  dom  R  |  ( b `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin }  <->  ( X  e.  ( Base `  ( S X_s R ) )  /\  { a  e.  dom  R  |  ( X `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin ) )
19 dsmmelbas.b . . . . . . 7  |-  B  =  ( Base `  P
)
20 dsmmelbas.p . . . . . . . 8  |-  P  =  ( S X_s R )
2120fveq2i 6194 . . . . . . 7  |-  ( Base `  P )  =  (
Base `  ( S X_s R ) )
2219, 21eqtr2i 2645 . . . . . 6  |-  ( Base `  ( S X_s R ) )  =  B
2322eleq2i 2693 . . . . 5  |-  ( X  e.  ( Base `  ( S X_s R ) )  <->  X  e.  B )
2423a1i 11 . . . 4  |-  ( ph  ->  ( X  e.  (
Base `  ( S X_s R ) )  <->  X  e.  B ) )
25 fndm 5990 . . . . . 6  |-  ( R  Fn  I  ->  dom  R  =  I )
26 rabeq 3192 . . . . . 6  |-  ( dom 
R  =  I  ->  { a  e.  dom  R  |  ( X `  a )  =/=  ( 0g `  ( R `  a ) ) }  =  { a  e.  I  |  ( X `
 a )  =/=  ( 0g `  ( R `  a )
) } )
271, 25, 263syl 18 . . . . 5  |-  ( ph  ->  { a  e.  dom  R  |  ( X `  a )  =/=  ( 0g `  ( R `  a ) ) }  =  { a  e.  I  |  ( X `
 a )  =/=  ( 0g `  ( R `  a )
) } )
2827eleq1d 2686 . . . 4  |-  ( ph  ->  ( { a  e. 
dom  R  |  ( X `  a )  =/=  ( 0g `  ( R `  a )
) }  e.  Fin  <->  {
a  e.  I  |  ( X `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin ) )
2924, 28anbi12d 747 . . 3  |-  ( ph  ->  ( ( X  e.  ( Base `  ( S X_s R ) )  /\  { a  e.  dom  R  |  ( X `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin )  <->  ( X  e.  B  /\  { a  e.  I  |  ( X `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin ) ) )
3018, 29syl5bb 272 . 2  |-  ( ph  ->  ( X  e.  {
b  e.  ( Base `  ( S X_s R ) )  |  { a  e.  dom  R  |  ( b `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin }  <->  ( X  e.  B  /\  { a  e.  I  |  ( X `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin ) ) )
3113, 30bitrd 268 1  |-  ( ph  ->  ( X  e.  H  <->  ( X  e.  B  /\  { a  e.  I  |  ( X `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200   dom cdm 5114    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   Fincfn 7955   Basecbs 15857   0gc0g 16100   X_scprds 16106    (+)m cdsmm 20075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-prds 16108  df-dsmm 20076
This theorem is referenced by:  dsmm0cl  20084  dsmmacl  20085  dsmmsubg  20087  dsmmlss  20088
  Copyright terms: Public domain W3C validator