MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmlss Structured version   Visualization version   Unicode version

Theorem dsmmlss 20088
Description: The finite hull of a product of modules is additionally closed under scalar multiplication and thus is a linear subspace of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmlss.i  |-  ( ph  ->  I  e.  W )
dsmmlss.s  |-  ( ph  ->  S  e.  Ring )
dsmmlss.r  |-  ( ph  ->  R : I --> LMod )
dsmmlss.k  |-  ( (
ph  /\  x  e.  I )  ->  (Scalar `  ( R `  x
) )  =  S )
dsmmlss.p  |-  P  =  ( S X_s R )
dsmmlss.u  |-  U  =  ( LSubSp `  P )
dsmmlss.h  |-  H  =  ( Base `  ( S  (+)m  R ) )
Assertion
Ref Expression
dsmmlss  |-  ( ph  ->  H  e.  U )
Distinct variable groups:    ph, x    x, S    x, R    x, I    x, P    x, H
Allowed substitution hints:    U( x)    W( x)

Proof of Theorem dsmmlss
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dsmmlss.p . . 3  |-  P  =  ( S X_s R )
2 dsmmlss.h . . 3  |-  H  =  ( Base `  ( S  (+)m  R ) )
3 dsmmlss.i . . 3  |-  ( ph  ->  I  e.  W )
4 dsmmlss.s . . 3  |-  ( ph  ->  S  e.  Ring )
5 dsmmlss.r . . . 4  |-  ( ph  ->  R : I --> LMod )
6 lmodgrp 18870 . . . . 5  |-  ( a  e.  LMod  ->  a  e. 
Grp )
76ssriv 3607 . . . 4  |-  LMod  C_  Grp
8 fss 6056 . . . 4  |-  ( ( R : I --> LMod  /\  LMod  C_ 
Grp )  ->  R : I --> Grp )
95, 7, 8sylancl 694 . . 3  |-  ( ph  ->  R : I --> Grp )
101, 2, 3, 4, 9dsmmsubg 20087 . 2  |-  ( ph  ->  H  e.  (SubGrp `  P ) )
11 dsmmlss.k . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (Scalar `  ( R `  x
) )  =  S )
121, 4, 3, 5, 11prdslmodd 18969 . . . . . 6  |-  ( ph  ->  P  e.  LMod )
1312adantr 481 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  P  e.  LMod )
14 simprl 794 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  a  e.  ( Base `  (Scalar `  P
) ) )
15 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  b  e.  H )
16 eqid 2622 . . . . . . . . 9  |-  ( S 
(+)m  R )  =  ( S  (+)m  R )
17 eqid 2622 . . . . . . . . 9  |-  ( Base `  P )  =  (
Base `  P )
18 ffn 6045 . . . . . . . . . 10  |-  ( R : I --> LMod  ->  R  Fn  I )
195, 18syl 17 . . . . . . . . 9  |-  ( ph  ->  R  Fn  I )
201, 16, 17, 2, 3, 19dsmmelbas 20083 . . . . . . . 8  |-  ( ph  ->  ( b  e.  H  <->  ( b  e.  ( Base `  P )  /\  {
x  e.  I  |  ( b `  x
)  =/=  ( 0g
`  ( R `  x ) ) }  e.  Fin ) ) )
2120adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  ( b  e.  H  <->  ( b  e.  ( Base `  P
)  /\  { x  e.  I  |  (
b `  x )  =/=  ( 0g `  ( R `  x )
) }  e.  Fin ) ) )
2215, 21mpbid 222 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  ( b  e.  ( Base `  P
)  /\  { x  e.  I  |  (
b `  x )  =/=  ( 0g `  ( R `  x )
) }  e.  Fin ) )
2322simpld 475 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  b  e.  ( Base `  P )
)
24 eqid 2622 . . . . . 6  |-  (Scalar `  P )  =  (Scalar `  P )
25 eqid 2622 . . . . . 6  |-  ( .s
`  P )  =  ( .s `  P
)
26 eqid 2622 . . . . . 6  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
2717, 24, 25, 26lmodvscl 18880 . . . . 5  |-  ( ( P  e.  LMod  /\  a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  ( Base `  P ) )  -> 
( a ( .s
`  P ) b )  e.  ( Base `  P ) )
2813, 14, 23, 27syl3anc 1326 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  ( a
( .s `  P
) b )  e.  ( Base `  P
) )
2922simprd 479 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  { x  e.  I  |  (
b `  x )  =/=  ( 0g `  ( R `  x )
) }  e.  Fin )
30 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  S )  =  (
Base `  S )
314ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  S  e.  Ring )
323ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  I  e.  W )
3319ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  R  Fn  I )
34 fex 6490 . . . . . . . . . . . . . . . . . 18  |-  ( ( R : I --> LMod  /\  I  e.  W )  ->  R  e.  _V )
355, 3, 34syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  R  e.  _V )
361, 4, 35prdssca 16116 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  S  =  (Scalar `  P ) )
3736fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  (Scalar `  P )
) )
3837eleq2d 2687 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( a  e.  (
Base `  S )  <->  a  e.  ( Base `  (Scalar `  P ) ) ) )
3938biimpar 502 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( Base `  (Scalar `  P
) ) )  -> 
a  e.  ( Base `  S ) )
4039adantrr 753 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  a  e.  ( Base `  S )
)
4140adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  a  e.  ( Base `  S ) )
4223adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  b  e.  ( Base `  P ) )
43 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  x  e.  I )
441, 17, 25, 30, 31, 32, 33, 41, 42, 43prdsvscafval 16140 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  ( ( a ( .s `  P ) b ) `  x
)  =  ( a ( .s `  ( R `  x )
) ( b `  x ) ) )
4544adantrr 753 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  ( x  e.  I  /\  ( b `  x
)  =  ( 0g
`  ( R `  x ) ) ) )  ->  ( (
a ( .s `  P ) b ) `
 x )  =  ( a ( .s
`  ( R `  x ) ) ( b `  x ) ) )
465ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  LMod )
4746adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  ( R `  x
)  e.  LMod )
48 simplrl 800 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  a  e.  ( Base `  (Scalar `  P )
) )
4936adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  I )  ->  S  =  (Scalar `  P )
)
5011, 49eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  I )  ->  (Scalar `  ( R `  x
) )  =  (Scalar `  P ) )
5150fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  I )  ->  ( Base `  (Scalar `  ( R `  x )
) )  =  (
Base `  (Scalar `  P
) ) )
5251adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  ( Base `  (Scalar `  ( R `  x
) ) )  =  ( Base `  (Scalar `  P ) ) )
5348, 52eleqtrrd 2704 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  a  e.  ( Base `  (Scalar `  ( R `  x ) ) ) )
54 eqid 2622 . . . . . . . . . . . . 13  |-  (Scalar `  ( R `  x ) )  =  (Scalar `  ( R `  x ) )
55 eqid 2622 . . . . . . . . . . . . 13  |-  ( .s
`  ( R `  x ) )  =  ( .s `  ( R `  x )
)
56 eqid 2622 . . . . . . . . . . . . 13  |-  ( Base `  (Scalar `  ( R `  x ) ) )  =  ( Base `  (Scalar `  ( R `  x
) ) )
57 eqid 2622 . . . . . . . . . . . . 13  |-  ( 0g
`  ( R `  x ) )  =  ( 0g `  ( R `  x )
)
5854, 55, 56, 57lmodvs0 18897 . . . . . . . . . . . 12  |-  ( ( ( R `  x
)  e.  LMod  /\  a  e.  ( Base `  (Scalar `  ( R `  x
) ) ) )  ->  ( a ( .s `  ( R `
 x ) ) ( 0g `  ( R `  x )
) )  =  ( 0g `  ( R `
 x ) ) )
5947, 53, 58syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  ( a ( .s
`  ( R `  x ) ) ( 0g `  ( R `
 x ) ) )  =  ( 0g
`  ( R `  x ) ) )
60 oveq2 6658 . . . . . . . . . . . 12  |-  ( ( b `  x )  =  ( 0g `  ( R `  x ) )  ->  ( a
( .s `  ( R `  x )
) ( b `  x ) )  =  ( a ( .s
`  ( R `  x ) ) ( 0g `  ( R `
 x ) ) ) )
6160eqeq1d 2624 . . . . . . . . . . 11  |-  ( ( b `  x )  =  ( 0g `  ( R `  x ) )  ->  ( (
a ( .s `  ( R `  x ) ) ( b `  x ) )  =  ( 0g `  ( R `  x )
)  <->  ( a ( .s `  ( R `
 x ) ) ( 0g `  ( R `  x )
) )  =  ( 0g `  ( R `
 x ) ) ) )
6259, 61syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  ( ( b `  x )  =  ( 0g `  ( R `
 x ) )  ->  ( a ( .s `  ( R `
 x ) ) ( b `  x
) )  =  ( 0g `  ( R `
 x ) ) ) )
6362impr 649 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  ( x  e.  I  /\  ( b `  x
)  =  ( 0g
`  ( R `  x ) ) ) )  ->  ( a
( .s `  ( R `  x )
) ( b `  x ) )  =  ( 0g `  ( R `  x )
) )
6445, 63eqtrd 2656 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  ( x  e.  I  /\  ( b `  x
)  =  ( 0g
`  ( R `  x ) ) ) )  ->  ( (
a ( .s `  P ) b ) `
 x )  =  ( 0g `  ( R `  x )
) )
6564expr 643 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  ( ( b `  x )  =  ( 0g `  ( R `
 x ) )  ->  ( ( a ( .s `  P
) b ) `  x )  =  ( 0g `  ( R `
 x ) ) ) )
6665necon3d 2815 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  (Scalar `  P )
)  /\  b  e.  H ) )  /\  x  e.  I )  ->  ( ( ( a ( .s `  P
) b ) `  x )  =/=  ( 0g `  ( R `  x ) )  -> 
( b `  x
)  =/=  ( 0g
`  ( R `  x ) ) ) )
6766ss2rabdv 3683 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  { x  e.  I  |  (
( a ( .s
`  P ) b ) `  x )  =/=  ( 0g `  ( R `  x ) ) }  C_  { x  e.  I  |  (
b `  x )  =/=  ( 0g `  ( R `  x )
) } )
68 ssfi 8180 . . . . 5  |-  ( ( { x  e.  I  |  ( b `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin  /\  {
x  e.  I  |  ( ( a ( .s `  P ) b ) `  x
)  =/=  ( 0g
`  ( R `  x ) ) } 
C_  { x  e.  I  |  ( b `
 x )  =/=  ( 0g `  ( R `  x )
) } )  ->  { x  e.  I  |  ( ( a ( .s `  P
) b ) `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin )
6929, 67, 68syl2anc 693 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  { x  e.  I  |  (
( a ( .s
`  P ) b ) `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin )
701, 16, 17, 2, 3, 19dsmmelbas 20083 . . . . 5  |-  ( ph  ->  ( ( a ( .s `  P ) b )  e.  H  <->  ( ( a ( .s
`  P ) b )  e.  ( Base `  P )  /\  {
x  e.  I  |  ( ( a ( .s `  P ) b ) `  x
)  =/=  ( 0g
`  ( R `  x ) ) }  e.  Fin ) ) )
7170adantr 481 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  ( (
a ( .s `  P ) b )  e.  H  <->  ( (
a ( .s `  P ) b )  e.  ( Base `  P
)  /\  { x  e.  I  |  (
( a ( .s
`  P ) b ) `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin ) ) )
7228, 69, 71mpbir2and 957 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  (Scalar `  P ) )  /\  b  e.  H )
)  ->  ( a
( .s `  P
) b )  e.  H )
7372ralrimivva 2971 . 2  |-  ( ph  ->  A. a  e.  (
Base `  (Scalar `  P
) ) A. b  e.  H  ( a
( .s `  P
) b )  e.  H )
74 dsmmlss.u . . . 4  |-  U  =  ( LSubSp `  P )
7524, 26, 17, 25, 74islss4 18962 . . 3  |-  ( P  e.  LMod  ->  ( H  e.  U  <->  ( H  e.  (SubGrp `  P )  /\  A. a  e.  (
Base `  (Scalar `  P
) ) A. b  e.  H  ( a
( .s `  P
) b )  e.  H ) ) )
7612, 75syl 17 . 2  |-  ( ph  ->  ( H  e.  U  <->  ( H  e.  (SubGrp `  P )  /\  A. a  e.  ( Base `  (Scalar `  P )
) A. b  e.  H  ( a ( .s `  P ) b )  e.  H
) ) )
7710, 73, 76mpbir2and 957 1  |-  ( ph  ->  H  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   X_scprds 16106   Grpcgrp 17422  SubGrpcsubg 17588   Ringcrg 18547   LModclmod 18863   LSubSpclss 18932    (+)m cdsmm 20075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-dsmm 20076
This theorem is referenced by:  dsmmlmod  20089  frlmlss  20095
  Copyright terms: Public domain W3C validator