MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsaddre2b Structured version   Visualization version   Unicode version

Theorem dvdsaddre2b 15029
Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 15028 only requiring  B to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
dvdsaddre2b  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )

Proof of Theorem dvdsaddre2b
StepHypRef Expression
1 dvdsadd2b 15028 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )
21a1d 25 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( B  e.  RR  ->  ( A  ||  B  <->  A 
||  ( C  +  B ) ) ) )
323exp 1264 . . . . 5  |-  ( A  e.  ZZ  ->  ( B  e.  ZZ  ->  ( ( C  e.  ZZ  /\  A  ||  C )  ->  ( B  e.  RR  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) ) ) ) )
43com24 95 . . . 4  |-  ( A  e.  ZZ  ->  ( B  e.  RR  ->  ( ( C  e.  ZZ  /\  A  ||  C )  ->  ( B  e.  ZZ  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) ) ) ) )
543imp 1256 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( B  e.  ZZ  ->  ( A  ||  B  <->  A 
||  ( C  +  B ) ) ) )
65com12 32 . 2  |-  ( B  e.  ZZ  ->  (
( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) ) )
7 dvdszrcl 14988 . . . . . . 7  |-  ( A 
||  B  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
8 pm2.24 121 . . . . . . 7  |-  ( B  e.  ZZ  ->  ( -.  B  e.  ZZ  ->  A  ||  ( C  +  B ) ) )
97, 8simpl2im 658 . . . . . 6  |-  ( A 
||  B  ->  ( -.  B  e.  ZZ  ->  A  ||  ( C  +  B ) ) )
109com12 32 . . . . 5  |-  ( -.  B  e.  ZZ  ->  ( A  ||  B  ->  A  ||  ( C  +  B ) ) )
1110adantr 481 . . . 4  |-  ( ( -.  B  e.  ZZ  /\  ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) ) )  ->  ( A  ||  B  ->  A  ||  ( C  +  B
) ) )
12 dvdszrcl 14988 . . . . . 6  |-  ( A 
||  ( C  +  B )  ->  ( A  e.  ZZ  /\  ( C  +  B )  e.  ZZ ) )
13 zcn 11382 . . . . . . . . . . . . . . . . 17  |-  ( C  e.  ZZ  ->  C  e.  CC )
1413adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ZZ  /\  ( B  e.  RR  /\ 
-.  B  e.  ZZ ) )  ->  C  e.  CC )
15 recn 10026 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  RR  ->  B  e.  CC )
1615ad2antrl 764 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ZZ  /\  ( B  e.  RR  /\ 
-.  B  e.  ZZ ) )  ->  B  e.  CC )
1714, 16addcomd 10238 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  ZZ  /\  ( B  e.  RR  /\ 
-.  B  e.  ZZ ) )  ->  ( C  +  B )  =  ( B  +  C ) )
18 eldif 3584 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  ( RR  \  ZZ )  <->  ( B  e.  RR  /\  -.  B  e.  ZZ ) )
19 nzadd 11425 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  ( RR 
\  ZZ )  /\  C  e.  ZZ )  ->  ( B  +  C
)  e.  ( RR 
\  ZZ ) )
2019eldifbd 3587 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  ( RR 
\  ZZ )  /\  C  e.  ZZ )  ->  -.  ( B  +  C )  e.  ZZ )
2120expcom 451 . . . . . . . . . . . . . . . . 17  |-  ( C  e.  ZZ  ->  ( B  e.  ( RR  \  ZZ )  ->  -.  ( B  +  C
)  e.  ZZ ) )
2218, 21syl5bir 233 . . . . . . . . . . . . . . . 16  |-  ( C  e.  ZZ  ->  (
( B  e.  RR  /\ 
-.  B  e.  ZZ )  ->  -.  ( B  +  C )  e.  ZZ ) )
2322imp 445 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  ZZ  /\  ( B  e.  RR  /\ 
-.  B  e.  ZZ ) )  ->  -.  ( B  +  C
)  e.  ZZ )
2417, 23eqneltrd 2720 . . . . . . . . . . . . . 14  |-  ( ( C  e.  ZZ  /\  ( B  e.  RR  /\ 
-.  B  e.  ZZ ) )  ->  -.  ( C  +  B
)  e.  ZZ )
2524exp32 631 . . . . . . . . . . . . 13  |-  ( C  e.  ZZ  ->  ( B  e.  RR  ->  ( -.  B  e.  ZZ  ->  -.  ( C  +  B )  e.  ZZ ) ) )
26 pm2.21 120 . . . . . . . . . . . . 13  |-  ( -.  ( C  +  B
)  e.  ZZ  ->  ( ( C  +  B
)  e.  ZZ  ->  A 
||  B ) )
2725, 26syl8 76 . . . . . . . . . . . 12  |-  ( C  e.  ZZ  ->  ( B  e.  RR  ->  ( -.  B  e.  ZZ  ->  ( ( C  +  B )  e.  ZZ  ->  A  ||  B ) ) ) )
2827adantr 481 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  A  ||  C )  -> 
( B  e.  RR  ->  ( -.  B  e.  ZZ  ->  ( ( C  +  B )  e.  ZZ  ->  A  ||  B
) ) ) )
2928com12 32 . . . . . . . . . 10  |-  ( B  e.  RR  ->  (
( C  e.  ZZ  /\  A  ||  C )  ->  ( -.  B  e.  ZZ  ->  ( ( C  +  B )  e.  ZZ  ->  A  ||  B
) ) ) )
3029a1i 11 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  ( B  e.  RR  ->  ( ( C  e.  ZZ  /\  A  ||  C )  ->  ( -.  B  e.  ZZ  ->  ( ( C  +  B )  e.  ZZ  ->  A  ||  B
) ) ) ) )
31303imp 1256 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( -.  B  e.  ZZ  ->  ( ( C  +  B )  e.  ZZ  ->  A  ||  B
) ) )
3231impcom 446 . . . . . . 7  |-  ( ( -.  B  e.  ZZ  /\  ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) ) )  ->  (
( C  +  B
)  e.  ZZ  ->  A 
||  B ) )
3332com12 32 . . . . . 6  |-  ( ( C  +  B )  e.  ZZ  ->  (
( -.  B  e.  ZZ  /\  ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) ) )  ->  A  ||  B
) )
3412, 33simpl2im 658 . . . . 5  |-  ( A 
||  ( C  +  B )  ->  (
( -.  B  e.  ZZ  /\  ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) ) )  ->  A  ||  B
) )
3534com12 32 . . . 4  |-  ( ( -.  B  e.  ZZ  /\  ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) ) )  ->  ( A  ||  ( C  +  B )  ->  A  ||  B ) )
3611, 35impbid 202 . . 3  |-  ( ( -.  B  e.  ZZ  /\  ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) ) )  ->  ( A  ||  B  <->  A  ||  ( C  +  B )
) )
3736ex 450 . 2  |-  ( -.  B  e.  ZZ  ->  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) ) )
386, 37pm2.61i 176 1  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    \ cdif 3571   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935    + caddc 9939   ZZcz 11377    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-dvds 14984
This theorem is referenced by:  2lgsoddprmlem2  25134
  Copyright terms: Public domain W3C validator