MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsadd2b Structured version   Visualization version   Unicode version

Theorem dvdsadd2b 15028
Description: Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
dvdsadd2b  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )

Proof of Theorem dvdsadd2b
StepHypRef Expression
1 simpl1 1064 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  e.  ZZ )
2 simpl3l 1116 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  C  e.  ZZ )
3 simpl2 1065 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  B  e.  ZZ )
4 simpl3r 1117 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  ||  C )
5 simpr 477 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  ||  B )
6 dvds2add 15015 . . . 4  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  ||  C  /\  A  ||  B )  ->  A  ||  ( C  +  B )
) )
76imp 445 . . 3  |-  ( ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  ||  C  /\  A  ||  B ) )  ->  A  ||  ( C  +  B )
)
81, 2, 3, 4, 5, 7syl32anc 1334 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  ||  ( C  +  B
) )
9 simpl1 1064 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  e.  ZZ )
10 simp3l 1089 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  ->  C  e.  ZZ )
11 simp2 1062 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  ->  B  e.  ZZ )
12 zaddcl 11417 . . . . . 6  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  +  B
)  e.  ZZ )
1310, 11, 12syl2anc 693 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( C  +  B
)  e.  ZZ )
1413adantr 481 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  ( C  +  B )  e.  ZZ )
1510znegcld 11484 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  ->  -u C  e.  ZZ )
1615adantr 481 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  -u C  e.  ZZ )
17 simpr 477 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  ( C  +  B
) )
18 simpl3r 1117 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  C )
19 simpl3l 1116 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  C  e.  ZZ )
20 dvdsnegb 14999 . . . . . 6  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  ||  C  <->  A 
||  -u C ) )
219, 19, 20syl2anc 693 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  ( A  ||  C  <->  A  ||  -u C
) )
2218, 21mpbid 222 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  -u C )
23 dvds2add 15015 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( C  +  B
)  e.  ZZ  /\  -u C  e.  ZZ )  ->  ( ( A 
||  ( C  +  B )  /\  A  ||  -u C )  ->  A  ||  ( ( C  +  B )  +  -u C ) ) )
2423imp 445 . . . 4  |-  ( ( ( A  e.  ZZ  /\  ( C  +  B
)  e.  ZZ  /\  -u C  e.  ZZ )  /\  ( A  ||  ( C  +  B
)  /\  A  ||  -u C
) )  ->  A  ||  ( ( C  +  B )  +  -u C ) )
259, 14, 16, 17, 22, 24syl32anc 1334 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  ( ( C  +  B )  +  -u C ) )
26 simpl2 1065 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  B  e.  ZZ )
2712ancoms 469 . . . . . . 7  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( C  +  B
)  e.  ZZ )
2827zcnd 11483 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( C  +  B
)  e.  CC )
29 zcn 11382 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  CC )
3029adantl 482 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  CC )
3128, 30negsubd 10398 . . . . 5  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( C  +  B )  +  -u C )  =  ( ( C  +  B
)  -  C ) )
32 zcn 11382 . . . . . . 7  |-  ( B  e.  ZZ  ->  B  e.  CC )
3332adantr 481 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  B  e.  CC )
3430, 33pncan2d 10394 . . . . 5  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( C  +  B )  -  C
)  =  B )
3531, 34eqtrd 2656 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( C  +  B )  +  -u C )  =  B )
3626, 19, 35syl2anc 693 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  (
( C  +  B
)  +  -u C
)  =  B )
3725, 36breqtrd 4679 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  B )
388, 37impbida 877 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934    + caddc 9939    - cmin 10266   -ucneg 10267   ZZcz 11377    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-dvds 14984
This theorem is referenced by:  dvdsaddre2b  15029  3dvdsdec  15054  3dvdsdecOLD  15055  3dvds2dec  15056  3dvds2decOLD  15057  2sqlem3  25145  2sqblem  25156  eupth2lem3lem3  27090  jm2.19lem2  37557
  Copyright terms: Public domain W3C validator