MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgnbusgreu Structured version   Visualization version   Unicode version

Theorem edgnbusgreu 26269
Description: For each edge incident to a vertex there is exactly one neighbor of the vertex also incident to this edge in a simple graph. (Contributed by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
edgnbusgreu.v  |-  V  =  (Vtx `  G )
edgnbusgreu.e  |-  E  =  (Edg `  G )
edgnbusgreu.n  |-  N  =  ( G NeighbVtx  M )
Assertion
Ref Expression
edgnbusgreu  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  E! n  e.  N  C  =  { M ,  n }
)
Distinct variable groups:    C, n    n, E    n, G    n, M    n, V
Allowed substitution hint:    N( n)

Proof of Theorem edgnbusgreu
StepHypRef Expression
1 simpl 473 . . . . . 6  |-  ( ( G  e. USGraph  /\  M  e.  V )  ->  G  e. USGraph  )
21adantr 481 . . . . 5  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  G  e. USGraph  )
3 edgnbusgreu.e . . . . . . . 8  |-  E  =  (Edg `  G )
43eleq2i 2693 . . . . . . 7  |-  ( C  e.  E  <->  C  e.  (Edg `  G ) )
54biimpi 206 . . . . . 6  |-  ( C  e.  E  ->  C  e.  (Edg `  G )
)
65ad2antrl 764 . . . . 5  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  C  e.  (Edg `  G ) )
7 simprr 796 . . . . 5  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  M  e.  C )
8 usgredg2vtxeu 26113 . . . . 5  |-  ( ( G  e. USGraph  /\  C  e.  (Edg `  G )  /\  M  e.  C
)  ->  E! n  e.  (Vtx `  G ) C  =  { M ,  n } )
92, 6, 7, 8syl3anc 1326 . . . 4  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  E! n  e.  (Vtx `  G ) C  =  { M ,  n } )
10 df-reu 2919 . . . . 5  |-  ( E! n  e.  (Vtx `  G ) C  =  { M ,  n } 
<->  E! n ( n  e.  (Vtx `  G
)  /\  C  =  { M ,  n }
) )
11 prcom 4267 . . . . . . . . . . . . . . . 16  |-  { M ,  n }  =  {
n ,  M }
1211eqeq2i 2634 . . . . . . . . . . . . . . 15  |-  ( C  =  { M ,  n }  <->  C  =  {
n ,  M }
)
1312biimpi 206 . . . . . . . . . . . . . 14  |-  ( C  =  { M ,  n }  ->  C  =  { n ,  M } )
1413eleq1d 2686 . . . . . . . . . . . . 13  |-  ( C  =  { M ,  n }  ->  ( C  e.  E  <->  { n ,  M }  e.  E
) )
1514biimpcd 239 . . . . . . . . . . . 12  |-  ( C  e.  E  ->  ( C  =  { M ,  n }  ->  { n ,  M }  e.  E
) )
1615ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  ( C  =  { M ,  n }  ->  { n ,  M }  e.  E
) )
1716adantld 483 . . . . . . . . . 10  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  ( (
n  e.  (Vtx `  G )  /\  C  =  { M ,  n } )  ->  { n ,  M }  e.  E
) )
1817imp 445 . . . . . . . . 9  |-  ( ( ( ( G  e. USGraph  /\  M  e.  V
)  /\  ( C  e.  E  /\  M  e.  C ) )  /\  ( n  e.  (Vtx `  G )  /\  C  =  { M ,  n } ) )  ->  { n ,  M }  e.  E )
19 simprr 796 . . . . . . . . 9  |-  ( ( ( ( G  e. USGraph  /\  M  e.  V
)  /\  ( C  e.  E  /\  M  e.  C ) )  /\  ( n  e.  (Vtx `  G )  /\  C  =  { M ,  n } ) )  ->  C  =  { M ,  n } )
2018, 19jca 554 . . . . . . . 8  |-  ( ( ( ( G  e. USGraph  /\  M  e.  V
)  /\  ( C  e.  E  /\  M  e.  C ) )  /\  ( n  e.  (Vtx `  G )  /\  C  =  { M ,  n } ) )  -> 
( { n ,  M }  e.  E  /\  C  =  { M ,  n }
) )
21 simpl 473 . . . . . . . . . 10  |-  ( ( { n ,  M }  e.  E  /\  C  =  { M ,  n } )  ->  { n ,  M }  e.  E )
22 eqid 2622 . . . . . . . . . . . 12  |-  (Vtx `  G )  =  (Vtx
`  G )
233, 22usgrpredgv 26089 . . . . . . . . . . 11  |-  ( ( G  e. USGraph  /\  { n ,  M }  e.  E
)  ->  ( n  e.  (Vtx `  G )  /\  M  e.  (Vtx `  G ) ) )
2423simpld 475 . . . . . . . . . 10  |-  ( ( G  e. USGraph  /\  { n ,  M }  e.  E
)  ->  n  e.  (Vtx `  G ) )
252, 21, 24syl2an 494 . . . . . . . . 9  |-  ( ( ( ( G  e. USGraph  /\  M  e.  V
)  /\  ( C  e.  E  /\  M  e.  C ) )  /\  ( { n ,  M }  e.  E  /\  C  =  { M ,  n } ) )  ->  n  e.  (Vtx
`  G ) )
26 simprr 796 . . . . . . . . 9  |-  ( ( ( ( G  e. USGraph  /\  M  e.  V
)  /\  ( C  e.  E  /\  M  e.  C ) )  /\  ( { n ,  M }  e.  E  /\  C  =  { M ,  n } ) )  ->  C  =  { M ,  n }
)
2725, 26jca 554 . . . . . . . 8  |-  ( ( ( ( G  e. USGraph  /\  M  e.  V
)  /\  ( C  e.  E  /\  M  e.  C ) )  /\  ( { n ,  M }  e.  E  /\  C  =  { M ,  n } ) )  ->  ( n  e.  (Vtx `  G )  /\  C  =  { M ,  n }
) )
2820, 27impbida 877 . . . . . . 7  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  ( (
n  e.  (Vtx `  G )  /\  C  =  { M ,  n } )  <->  ( {
n ,  M }  e.  E  /\  C  =  { M ,  n } ) ) )
2928eubidv 2490 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  ( E! n ( n  e.  (Vtx `  G )  /\  C  =  { M ,  n }
)  <->  E! n ( { n ,  M }  e.  E  /\  C  =  { M ,  n } ) ) )
3029biimpd 219 . . . . 5  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  ( E! n ( n  e.  (Vtx `  G )  /\  C  =  { M ,  n }
)  ->  E! n
( { n ,  M }  e.  E  /\  C  =  { M ,  n }
) ) )
3110, 30syl5bi 232 . . . 4  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  ( E! n  e.  (Vtx `  G
) C  =  { M ,  n }  ->  E! n ( { n ,  M }  e.  E  /\  C  =  { M ,  n } ) ) )
329, 31mpd 15 . . 3  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  E! n
( { n ,  M }  e.  E  /\  C  =  { M ,  n }
) )
33 edgnbusgreu.n . . . . . . . 8  |-  N  =  ( G NeighbVtx  M )
3433eleq2i 2693 . . . . . . 7  |-  ( n  e.  N  <->  n  e.  ( G NeighbVtx  M ) )
353nbusgreledg 26249 . . . . . . 7  |-  ( G  e. USGraph  ->  ( n  e.  ( G NeighbVtx  M )  <->  { n ,  M }  e.  E ) )
3634, 35syl5bb 272 . . . . . 6  |-  ( G  e. USGraph  ->  ( n  e.  N  <->  { n ,  M }  e.  E )
)
3736anbi1d 741 . . . . 5  |-  ( G  e. USGraph  ->  ( ( n  e.  N  /\  C  =  { M ,  n } )  <->  ( {
n ,  M }  e.  E  /\  C  =  { M ,  n } ) ) )
3837ad2antrr 762 . . . 4  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  ( (
n  e.  N  /\  C  =  { M ,  n } )  <->  ( {
n ,  M }  e.  E  /\  C  =  { M ,  n } ) ) )
3938eubidv 2490 . . 3  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  ( E! n ( n  e.  N  /\  C  =  { M ,  n } )  <->  E! n
( { n ,  M }  e.  E  /\  C  =  { M ,  n }
) ) )
4032, 39mpbird 247 . 2  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  E! n
( n  e.  N  /\  C  =  { M ,  n }
) )
41 df-reu 2919 . 2  |-  ( E! n  e.  N  C  =  { M ,  n } 
<->  E! n ( n  e.  N  /\  C  =  { M ,  n } ) )
4240, 41sylibr 224 1  |-  ( ( ( G  e. USGraph  /\  M  e.  V )  /\  ( C  e.  E  /\  M  e.  C )
)  ->  E! n  e.  N  C  =  { M ,  n }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E!weu 2470   E!wreu 2914   {cpr 4179   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-nbgr 26228
This theorem is referenced by:  nbusgrf1o0  26271
  Copyright terms: Public domain W3C validator