MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi2 Structured version   Visualization version   Unicode version

Theorem efgi2 18138
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
Assertion
Ref Expression
efgi2  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  A  .~  B
)
Distinct variable groups:    y, z    v, n, w, y, z   
n, M, v, w   
n, W, v, w, y, z    y,  .~ , z    n, I, v, w, y, z
Allowed substitution hints:    A( y, z, w, v, n)    B( y, z, w, v, n)    .~ ( w, v, n)    T( y, z, w, v, n)    M( y, z)

Proof of Theorem efgi2
Dummy variables  a 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( T `  a )  =  ( T `  A ) )
21rneqd 5353 . . . . . . . . . 10  |-  ( a  =  A  ->  ran  ( T `  a )  =  ran  ( T `
 A ) )
3 eceq1 7782 . . . . . . . . . 10  |-  ( a  =  A  ->  [ a ] r  =  [ A ] r )
42, 3sseq12d 3634 . . . . . . . . 9  |-  ( a  =  A  ->  ( ran  ( T `  a
)  C_  [ a ] r  <->  ran  ( T `
 A )  C_  [ A ] r ) )
54rspcv 3305 . . . . . . . 8  |-  ( A  e.  W  ->  ( A. a  e.  W  ran  ( T `  a
)  C_  [ a ] r  ->  ran  ( T `  A ) 
C_  [ A ]
r ) )
65adantr 481 . . . . . . 7  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( A. a  e.  W  ran  ( T `
 a )  C_  [ a ] r  ->  ran  ( T `  A
)  C_  [ A ] r ) )
7 ssel 3597 . . . . . . . . 9  |-  ( ran  ( T `  A
)  C_  [ A ] r  ->  ( B  e.  ran  ( T `
 A )  ->  B  e.  [ A ] r ) )
87com12 32 . . . . . . . 8  |-  ( B  e.  ran  ( T `
 A )  -> 
( ran  ( T `  A )  C_  [ A ] r  ->  B  e.  [ A ] r ) )
9 simpl 473 . . . . . . . . . . 11  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  B  e.  [ A ] r )
10 elecg 7785 . . . . . . . . . . 11  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  ( B  e.  [ A ] r  <->  A r B ) )
119, 10mpbid 222 . . . . . . . . . 10  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  A
r B )
12 df-br 4654 . . . . . . . . . 10  |-  ( A r B  <->  <. A ,  B >.  e.  r )
1311, 12sylib 208 . . . . . . . . 9  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  <. A ,  B >.  e.  r )
1413expcom 451 . . . . . . . 8  |-  ( A  e.  W  ->  ( B  e.  [ A ] r  ->  <. A ,  B >.  e.  r ) )
158, 14sylan9r 690 . . . . . . 7  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( ran  ( T `  A )  C_ 
[ A ] r  ->  <. A ,  B >.  e.  r ) )
166, 15syld 47 . . . . . 6  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( A. a  e.  W  ran  ( T `
 a )  C_  [ a ] r  ->  <. A ,  B >.  e.  r ) )
1716adantld 483 . . . . 5  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r )  ->  <. A ,  B >.  e.  r ) )
1817alrimiv 1855 . . . 4  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  A. r ( ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r )  ->  <. A ,  B >.  e.  r ) )
19 opex 4932 . . . . 5  |-  <. A ,  B >.  e.  _V
2019elintab 4487 . . . 4  |-  ( <. A ,  B >.  e. 
|^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r ) }  <->  A. r
( ( r  Er  W  /\  A. a  e.  W  ran  ( T `
 a )  C_  [ a ] r )  ->  <. A ,  B >.  e.  r ) )
2118, 20sylibr 224 . . 3  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  <. A ,  B >.  e.  |^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a
)  C_  [ a ] r ) } )
22 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
23 efgval.r . . . 4  |-  .~  =  ( ~FG  `  I )
24 efgval2.m . . . 4  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
25 efgval2.t . . . 4  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
2622, 23, 24, 25efgval2 18137 . . 3  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r ) }
2721, 26syl6eleqr 2712 . 2  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  <. A ,  B >.  e.  .~  )
28 df-br 4654 . 2  |-  ( A  .~  B  <->  <. A ,  B >.  e.  .~  )
2927, 28sylibr 224 1  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  A  .~  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912    \ cdif 3571    C_ wss 3574   <.cop 4183   <.cotp 4185   |^|cint 4475   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554    Er wer 7739   [cec 7740   0cc0 9936   ...cfz 12326   #chash 13117  Word cword 13291   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593  df-efg 18122
This theorem is referenced by:  efginvrel2  18140  efgsrel  18147  efgcpbllemb  18168
  Copyright terms: Public domain W3C validator