MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqs1 Structured version   Visualization version   Unicode version

Theorem eqs1 13392
Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
eqs1  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  ->  W  =  <" ( W `  0 ) "> )

Proof of Theorem eqs1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  -> 
( # `  W )  =  1 )
2 s1len 13385 . . 3  |-  ( # `  <" ( W `
 0 ) "> )  =  1
31, 2syl6eqr 2674 . 2  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  -> 
( # `  W )  =  ( # `  <" ( W `  0
) "> )
)
4 fvex 6201 . . . . 5  |-  ( W `
 0 )  e. 
_V
5 s1fv 13390 . . . . . 6  |-  ( ( W `  0 )  e.  _V  ->  ( <" ( W ` 
0 ) "> `  0 )  =  ( W `  0 ) )
65eqcomd 2628 . . . . 5  |-  ( ( W `  0 )  e.  _V  ->  ( W `  0 )  =  ( <" ( W `  0 ) "> `  0 )
)
74, 6mp1i 13 . . . 4  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  -> 
( W `  0
)  =  ( <" ( W ` 
0 ) "> `  0 ) )
8 c0ex 10034 . . . . 5  |-  0  e.  _V
9 fveq2 6191 . . . . . 6  |-  ( x  =  0  ->  ( W `  x )  =  ( W ` 
0 ) )
10 fveq2 6191 . . . . . 6  |-  ( x  =  0  ->  ( <" ( W ` 
0 ) "> `  x )  =  (
<" ( W ` 
0 ) "> `  0 ) )
119, 10eqeq12d 2637 . . . . 5  |-  ( x  =  0  ->  (
( W `  x
)  =  ( <" ( W ` 
0 ) "> `  x )  <->  ( W `  0 )  =  ( <" ( W `  0 ) "> `  0 )
) )
128, 11ralsn 4222 . . . 4  |-  ( A. x  e.  { 0 }  ( W `  x )  =  (
<" ( W ` 
0 ) "> `  x )  <->  ( W `  0 )  =  ( <" ( W `  0 ) "> `  0 )
)
137, 12sylibr 224 . . 3  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  ->  A. x  e.  { 0 }  ( W `  x )  =  (
<" ( W ` 
0 ) "> `  x ) )
14 oveq2 6658 . . . . . 6  |-  ( (
# `  W )  =  1  ->  (
0..^ ( # `  W
) )  =  ( 0..^ 1 ) )
1514adantl 482 . . . . 5  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  -> 
( 0..^ ( # `  W ) )  =  ( 0..^ 1 ) )
16 fzo01 12550 . . . . 5  |-  ( 0..^ 1 )  =  {
0 }
1715, 16syl6eq 2672 . . . 4  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  -> 
( 0..^ ( # `  W ) )  =  { 0 } )
1817raleqdv 3144 . . 3  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  -> 
( A. x  e.  ( 0..^ ( # `  W ) ) ( W `  x )  =  ( <" ( W `  0 ) "> `  x )  <->  A. x  e.  { 0 }  ( W `  x )  =  (
<" ( W ` 
0 ) "> `  x ) ) )
1913, 18mpbird 247 . 2  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  ->  A. x  e.  (
0..^ ( # `  W
) ) ( W `
 x )  =  ( <" ( W `  0 ) "> `  x )
)
20 1nn 11031 . . . . 5  |-  1  e.  NN
21 fstwrdne0 13345 . . . . 5  |-  ( ( 1  e.  NN  /\  ( W  e. Word  A  /\  ( # `  W )  =  1 ) )  ->  ( W ` 
0 )  e.  A
)
2220, 21mpan 706 . . . 4  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  -> 
( W `  0
)  e.  A )
2322s1cld 13383 . . 3  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  ->  <" ( W ` 
0 ) ">  e. Word  A )
24 eqwrd 13346 . . 3  |-  ( ( W  e. Word  A  /\  <" ( W ` 
0 ) ">  e. Word  A )  ->  ( W  =  <" ( W `  0 ) ">  <->  ( ( # `  W )  =  (
# `  <" ( W `  0 ) "> )  /\  A. x  e.  ( 0..^ ( # `  W
) ) ( W `
 x )  =  ( <" ( W `  0 ) "> `  x )
) ) )
2523, 24syldan 487 . 2  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  -> 
( W  =  <" ( W `  0
) ">  <->  ( ( # `
 W )  =  ( # `  <" ( W `  0
) "> )  /\  A. x  e.  ( 0..^ ( # `  W
) ) ( W `
 x )  =  ( <" ( W `  0 ) "> `  x )
) ) )
263, 19, 25mpbir2and 957 1  |-  ( ( W  e. Word  A  /\  ( # `  W )  =  1 )  ->  W  =  <" ( W `  0 ) "> )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   {csn 4177   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   NNcn 11020  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs1 13294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-s1 13302
This theorem is referenced by:  wrdl1exs1  13393  wrdl1s1  13394  swrds1  13451  revs1  13514  signsvtn0  30647
  Copyright terms: Public domain W3C validator