Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvtn0 Structured version   Visualization version   Unicode version

Theorem signsvtn0 30647
Description: If the last letter is non zero, then this is the zero-skipping sign. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsv.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
signsv.t  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
signsv.v  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
signsvtn0.1  |-  N  =  ( # `  F
)
Assertion
Ref Expression
signsvtn0  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( ( T `  F ) `  ( N  -  1 ) )  =  (sgn `  ( F `  ( N  -  1 ) ) ) )
Distinct variable groups:    a, b,  .+^    f, i, n, F    f, W, i, n    F, a, b, f, i, n    N, a    f, b, i, n, N    T, a,
b
Allowed substitution hints:    .+^ ( f, i,
j, n)    T( f,
i, j, n)    F( j)    N( j)    V( f, i, j, n, a, b)    W( j, a, b)

Proof of Theorem signsvtn0
StepHypRef Expression
1 eldifsn 4317 . . . . . . . . . . . 12  |-  ( F  e.  (Word  RR  \  { (/) } )  <->  ( F  e. Word  RR  /\  F  =/=  (/) ) )
21biimpi 206 . . . . . . . . . . 11  |-  ( F  e.  (Word  RR  \  { (/) } )  -> 
( F  e. Word  RR  /\  F  =/=  (/) ) )
32adantr 481 . . . . . . . . . 10  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F  e. Word  RR  /\  F  =/=  (/) ) )
43simpld 475 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  ->  F  e. Word  RR )
54adantr 481 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  F  e. Word  RR )
6 wrdf 13310 . . . . . . . 8  |-  ( F  e. Word  RR  ->  F :
( 0..^ ( # `  F ) ) --> RR )
75, 6syl 17 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  F : ( 0..^ (
# `  F )
) --> RR )
8 lennncl 13325 . . . . . . . . . 10  |-  ( ( F  e. Word  RR  /\  F  =/=  (/) )  ->  ( # `
 F )  e.  NN )
93, 8syl 17 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( # `  F )  e.  NN )
109adantr 481 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  ( # `
 F )  e.  NN )
11 lbfzo0 12507 . . . . . . . 8  |-  ( 0  e.  ( 0..^ (
# `  F )
)  <->  ( # `  F
)  e.  NN )
1210, 11sylibr 224 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  0  e.  ( 0..^ ( # `  F ) ) )
137, 12ffvelrnd 6360 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  ( F `  0 )  e.  RR )
14 signsv.p . . . . . . 7  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
15 signsv.w . . . . . . 7  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
16 signsv.t . . . . . . 7  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
17 signsv.v . . . . . . 7  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
1814, 15, 16, 17signstf0 30645 . . . . . 6  |-  ( ( F `  0 )  e.  RR  ->  ( T `  <" ( F `  0 ) "> )  =  <" (sgn `  ( F `  0 ) ) "> )
1913, 18syl 17 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  ( T `  <" ( F `  0 ) "> )  =  <" (sgn `  ( F `  0 ) ) "> )
20 signsvtn0.1 . . . . . . . 8  |-  N  =  ( # `  F
)
21 simpr 477 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  N  =  1 )
2220, 21syl5eqr 2670 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  ( # `
 F )  =  1 )
23 eqs1 13392 . . . . . . 7  |-  ( ( F  e. Word  RR  /\  ( # `  F )  =  1 )  ->  F  =  <" ( F `  0 ) "> )
245, 22, 23syl2anc 693 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  F  =  <" ( F `
 0 ) "> )
2524fveq2d 6195 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  ( T `  F )  =  ( T `  <" ( F ` 
0 ) "> ) )
26 oveq1 6657 . . . . . . . . . 10  |-  ( N  =  1  ->  ( N  -  1 )  =  ( 1  -  1 ) )
27 1m1e0 11089 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
2826, 27syl6eq 2672 . . . . . . . . 9  |-  ( N  =  1  ->  ( N  -  1 )  =  0 )
2928fveq2d 6195 . . . . . . . 8  |-  ( N  =  1  ->  ( F `  ( N  -  1 ) )  =  ( F ` 
0 ) )
3029fveq2d 6195 . . . . . . 7  |-  ( N  =  1  ->  (sgn `  ( F `  ( N  -  1 ) ) )  =  (sgn
`  ( F ` 
0 ) ) )
3130s1eqd 13381 . . . . . 6  |-  ( N  =  1  ->  <" (sgn `  ( F `  ( N  -  1 ) ) ) ">  =  <" (sgn `  ( F `  0 ) ) "> )
3221, 31syl 17 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  <" (sgn `  ( F `  ( N  -  1 ) ) ) ">  =  <" (sgn `  ( F `  0 ) ) "> )
3319, 25, 323eqtr4d 2666 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  ( T `  F )  =  <" (sgn `  ( F `  ( N  -  1 ) ) ) "> )
3421, 28syl 17 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  ( N  -  1 )  =  0 )
3533, 34fveq12d 6197 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  (
( T `  F
) `  ( N  -  1 ) )  =  ( <" (sgn `  ( F `  ( N  -  1 ) ) ) "> `  0 ) )
364, 6syl 17 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  ->  F : ( 0..^ (
# `  F )
) --> RR )
3720oveq1i 6660 . . . . . . . . 9  |-  ( N  -  1 )  =  ( ( # `  F
)  -  1 )
38 fzo0end 12560 . . . . . . . . . 10  |-  ( (
# `  F )  e.  NN  ->  ( ( # `
 F )  - 
1 )  e.  ( 0..^ ( # `  F
) ) )
393, 8, 383syl 18 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( ( # `  F
)  -  1 )  e.  ( 0..^ (
# `  F )
) )
4037, 39syl5eqel 2705 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( N  -  1 )  e.  ( 0..^ ( # `  F
) ) )
4136, 40ffvelrnd 6360 . . . . . . 7  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F `  ( N  -  1 ) )  e.  RR )
4241rexrd 10089 . . . . . 6  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F `  ( N  -  1 ) )  e.  RR* )
43 sgncl 30600 . . . . . 6  |-  ( ( F `  ( N  -  1 ) )  e.  RR*  ->  (sgn `  ( F `  ( N  -  1 ) ) )  e.  { -u
1 ,  0 ,  1 } )
4442, 43syl 17 . . . . 5  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
(sgn `  ( F `  ( N  -  1 ) ) )  e. 
{ -u 1 ,  0 ,  1 } )
4544adantr 481 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  (sgn `  ( F `  ( N  -  1 ) ) )  e.  { -u 1 ,  0 ,  1 } )
46 s1fv 13390 . . . 4  |-  ( (sgn
`  ( F `  ( N  -  1
) ) )  e. 
{ -u 1 ,  0 ,  1 }  ->  (
<" (sgn `  ( F `  ( N  -  1 ) ) ) "> `  0
)  =  (sgn `  ( F `  ( N  -  1 ) ) ) )
4745, 46syl 17 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  ( <" (sgn `  ( F `  ( N  -  1 ) ) ) "> `  0
)  =  (sgn `  ( F `  ( N  -  1 ) ) ) )
4835, 47eqtrd 2656 . 2  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  = 
1 )  ->  (
( T `  F
) `  ( N  -  1 ) )  =  (sgn `  ( F `  ( N  -  1 ) ) ) )
49 fzossfz 12488 . . . . . . . . . 10  |-  ( 0..^ ( # `  F
) )  C_  (
0 ... ( # `  F
) )
5049, 39sseldi 3601 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( ( # `  F
)  -  1 )  e.  ( 0 ... ( # `  F
) ) )
51 swrd0val 13421 . . . . . . . . 9  |-  ( ( F  e. Word  RR  /\  ( ( # `  F
)  -  1 )  e.  ( 0 ... ( # `  F
) ) )  -> 
( F substr  <. 0 ,  ( ( # `  F
)  -  1 )
>. )  =  ( F  |`  ( 0..^ ( ( # `  F
)  -  1 ) ) ) )
524, 50, 51syl2anc 693 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F substr  <. 0 ,  ( ( # `  F
)  -  1 )
>. )  =  ( F  |`  ( 0..^ ( ( # `  F
)  -  1 ) ) ) )
5352oveq1d 6665 . . . . . . 7  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( ( F substr  <. 0 ,  ( ( # `  F )  -  1 ) >. ) ++  <" ( lastS  `  F ) "> )  =  ( ( F  |`  ( 0..^ ( ( # `  F
)  -  1 ) ) ) ++  <" ( lastS  `  F ) "> ) )
54 swrdccatwrd 13468 . . . . . . . . 9  |-  ( ( F  e. Word  RR  /\  F  =/=  (/) )  ->  (
( F substr  <. 0 ,  ( ( # `  F
)  -  1 )
>. ) ++  <" ( lastS  `  F ) "> )  =  F )
5554eqcomd 2628 . . . . . . . 8  |-  ( ( F  e. Word  RR  /\  F  =/=  (/) )  ->  F  =  ( ( F substr  <. 0 ,  ( (
# `  F )  -  1 ) >.
) ++  <" ( lastS  `  F
) "> )
)
563, 55syl 17 . . . . . . 7  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  ->  F  =  ( ( F substr  <. 0 ,  ( ( # `  F
)  -  1 )
>. ) ++  <" ( lastS  `  F ) "> ) )
5737oveq2i 6661 . . . . . . . . . 10  |-  ( 0..^ ( N  -  1 ) )  =  ( 0..^ ( ( # `  F )  -  1 ) )
5857a1i 11 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( 0..^ ( N  -  1 ) )  =  ( 0..^ ( ( # `  F
)  -  1 ) ) )
5958reseq2d 5396 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F  |`  (
0..^ ( N  - 
1 ) ) )  =  ( F  |`  ( 0..^ ( ( # `  F )  -  1 ) ) ) )
6037a1i 11 . . . . . . . . . . 11  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( N  -  1 )  =  ( (
# `  F )  -  1 ) )
6160fveq2d 6195 . . . . . . . . . 10  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F `  ( N  -  1 ) )  =  ( F `
 ( ( # `  F )  -  1 ) ) )
62 lsw 13351 . . . . . . . . . . 11  |-  ( F  e.  (Word  RR  \  { (/) } )  -> 
( lastS  `  F )  =  ( F `  (
( # `  F )  -  1 ) ) )
6362adantr 481 . . . . . . . . . 10  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( lastS  `  F )  =  ( F `  (
( # `  F )  -  1 ) ) )
6461, 63eqtr4d 2659 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F `  ( N  -  1 ) )  =  ( lastS  `  F
) )
6564s1eqd 13381 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  ->  <" ( F `  ( N  -  1
) ) ">  =  <" ( lastS  `  F
) "> )
6659, 65oveq12d 6668 . . . . . . 7  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( ( F  |`  ( 0..^ ( N  - 
1 ) ) ) ++ 
<" ( F `  ( N  -  1
) ) "> )  =  ( ( F  |`  ( 0..^ ( ( # `  F
)  -  1 ) ) ) ++  <" ( lastS  `  F ) "> ) )
6753, 56, 663eqtr4d 2666 . . . . . 6  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  ->  F  =  ( ( F  |`  ( 0..^ ( N  -  1 ) ) ) ++  <" ( F `  ( N  -  1 ) ) "> ) )
6867fveq2d 6195 . . . . 5  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( T `  F
)  =  ( T `
 ( ( F  |`  ( 0..^ ( N  -  1 ) ) ) ++  <" ( F `
 ( N  - 
1 ) ) "> ) ) )
69 ffn 6045 . . . . . . . . . . 11  |-  ( F : ( 0..^ (
# `  F )
) --> RR  ->  F  Fn  ( 0..^ ( # `  F ) ) )
704, 6, 693syl 18 . . . . . . . . . 10  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  ->  F  Fn  ( 0..^ ( # `  F
) ) )
7120a1i 11 . . . . . . . . . . . 12  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  ->  N  =  ( # `  F
) )
7271oveq2d 6666 . . . . . . . . . . 11  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( 0..^ N )  =  ( 0..^ (
# `  F )
) )
7372fneq2d 5982 . . . . . . . . . 10  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F  Fn  (
0..^ N )  <->  F  Fn  ( 0..^ ( # `  F
) ) ) )
7470, 73mpbird 247 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  ->  F  Fn  ( 0..^ N ) )
7520, 9syl5eqel 2705 . . . . . . . . . . 11  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  ->  N  e.  NN )
7675nnnn0d 11351 . . . . . . . . . 10  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  ->  N  e.  NN0 )
77 nn0z 11400 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  ZZ )
78 fzossrbm1 12497 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
0..^ ( N  - 
1 ) )  C_  ( 0..^ N ) )
7976, 77, 783syl 18 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( 0..^ ( N  -  1 ) ) 
C_  ( 0..^ N ) )
80 fnssres 6004 . . . . . . . . 9  |-  ( ( F  Fn  ( 0..^ N )  /\  (
0..^ ( N  - 
1 ) )  C_  ( 0..^ N ) )  ->  ( F  |`  ( 0..^ ( N  - 
1 ) ) )  Fn  ( 0..^ ( N  -  1 ) ) )
8174, 79, 80syl2anc 693 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F  |`  (
0..^ ( N  - 
1 ) ) )  Fn  ( 0..^ ( N  -  1 ) ) )
82 hashfn 13164 . . . . . . . 8  |-  ( ( F  |`  ( 0..^ ( N  -  1 ) ) )  Fn  ( 0..^ ( N  -  1 ) )  ->  ( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  =  ( # `  (
0..^ ( N  - 
1 ) ) ) )
8381, 82syl 17 . . . . . . 7  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  =  (
# `  ( 0..^ ( N  -  1
) ) ) )
84 nnm1nn0 11334 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
85 hashfzo0 13217 . . . . . . . 8  |-  ( ( N  -  1 )  e.  NN0  ->  ( # `  ( 0..^ ( N  -  1 ) ) )  =  ( N  -  1 ) )
8675, 84, 853syl 18 . . . . . . 7  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( # `  ( 0..^ ( N  -  1 ) ) )  =  ( N  -  1 ) )
8783, 86eqtrd 2656 . . . . . 6  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  =  ( N  -  1 ) )
8887eqcomd 2628 . . . . 5  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( N  -  1 )  =  ( # `  ( F  |`  (
0..^ ( N  - 
1 ) ) ) ) )
8968, 88fveq12d 6197 . . . 4  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( ( T `  F ) `  ( N  -  1 ) )  =  ( ( T `  ( ( F  |`  ( 0..^ ( N  -  1 ) ) ) ++  <" ( F `  ( N  -  1 ) ) "> )
) `  ( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) ) ) )
9089adantr 481 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  (
( T `  F
) `  ( N  -  1 ) )  =  ( ( T `
 ( ( F  |`  ( 0..^ ( N  -  1 ) ) ) ++  <" ( F `
 ( N  - 
1 ) ) "> ) ) `  ( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) ) ) )
9152, 59eqtr4d 2659 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F substr  <. 0 ,  ( ( # `  F
)  -  1 )
>. )  =  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )
92 swrdcl 13419 . . . . . . . . 9  |-  ( F  e. Word  RR  ->  ( F substr  <. 0 ,  ( (
# `  F )  -  1 ) >.
)  e. Word  RR )
934, 92syl 17 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F substr  <. 0 ,  ( ( # `  F
)  -  1 )
>. )  e. Word  RR )
9491, 93eqeltrrd 2702 . . . . . . 7  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F  |`  (
0..^ ( N  - 
1 ) ) )  e. Word  RR )
9594adantr 481 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  ( F  |`  ( 0..^ ( N  -  1 ) ) )  e. Word  RR )
9687adantr 481 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  ( # `
 ( F  |`  ( 0..^ ( N  - 
1 ) ) ) )  =  ( N  -  1 ) )
9775adantr 481 . . . . . . . . . 10  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  N  e.  NN )
9897nncnd 11036 . . . . . . . . 9  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  N  e.  CC )
99 1cnd 10056 . . . . . . . . 9  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  1  e.  CC )
100 simpr 477 . . . . . . . . 9  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  N  =/=  1 )
10198, 99, 100subne0d 10401 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  ( N  -  1 )  =/=  0 )
10296, 101eqnetrd 2861 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  ( # `
 ( F  |`  ( 0..^ ( N  - 
1 ) ) ) )  =/=  0 )
103 fveq2 6191 . . . . . . . . 9  |-  ( ( F  |`  ( 0..^ ( N  -  1 ) ) )  =  (/)  ->  ( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  =  ( # `  (/) ) )
104 hash0 13158 . . . . . . . . 9  |-  ( # `  (/) )  =  0
105103, 104syl6eq 2672 . . . . . . . 8  |-  ( ( F  |`  ( 0..^ ( N  -  1 ) ) )  =  (/)  ->  ( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  =  0 )
106105necon3i 2826 . . . . . . 7  |-  ( (
# `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  =/=  0  ->  ( F  |`  (
0..^ ( N  - 
1 ) ) )  =/=  (/) )
107102, 106syl 17 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  ( F  |`  ( 0..^ ( N  -  1 ) ) )  =/=  (/) )
10895, 107jca 554 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  (
( F  |`  (
0..^ ( N  - 
1 ) ) )  e. Word  RR  /\  ( F  |`  ( 0..^ ( N  -  1 ) ) )  =/=  (/) ) )
109 eldifsn 4317 . . . . 5  |-  ( ( F  |`  ( 0..^ ( N  -  1 ) ) )  e.  (Word  RR  \  { (/)
} )  <->  ( ( F  |`  ( 0..^ ( N  -  1 ) ) )  e. Word  RR  /\  ( F  |`  (
0..^ ( N  - 
1 ) ) )  =/=  (/) ) )
110108, 109sylibr 224 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  ( F  |`  ( 0..^ ( N  -  1 ) ) )  e.  (Word 
RR  \  { (/) } ) )
11141adantr 481 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  ( F `  ( N  -  1 ) )  e.  RR )
11214, 15, 16, 17signstfvn 30646 . . . 4  |-  ( ( ( F  |`  (
0..^ ( N  - 
1 ) ) )  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  e.  RR )  -> 
( ( T `  ( ( F  |`  ( 0..^ ( N  - 
1 ) ) ) ++ 
<" ( F `  ( N  -  1
) ) "> ) ) `  ( # `
 ( F  |`  ( 0..^ ( N  - 
1 ) ) ) ) )  =  ( ( ( T `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) ) `
 ( ( # `  ( F  |`  (
0..^ ( N  - 
1 ) ) ) )  -  1 ) )  .+^  (sgn `  ( F `  ( N  -  1 ) ) ) ) )
113110, 111, 112syl2anc 693 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  (
( T `  (
( F  |`  (
0..^ ( N  - 
1 ) ) ) ++ 
<" ( F `  ( N  -  1
) ) "> ) ) `  ( # `
 ( F  |`  ( 0..^ ( N  - 
1 ) ) ) ) )  =  ( ( ( T `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) ) `
 ( ( # `  ( F  |`  (
0..^ ( N  - 
1 ) ) ) )  -  1 ) )  .+^  (sgn `  ( F `  ( N  -  1 ) ) ) ) )
114 lennncl 13325 . . . . . 6  |-  ( ( ( F  |`  (
0..^ ( N  - 
1 ) ) )  e. Word  RR  /\  ( F  |`  ( 0..^ ( N  -  1 ) ) )  =/=  (/) )  -> 
( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  e.  NN )
115 fzo0end 12560 . . . . . 6  |-  ( (
# `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  e.  NN  ->  ( ( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  - 
1 )  e.  ( 0..^ ( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) ) ) )
116108, 114, 1153syl 18 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  (
( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  -  1 )  e.  ( 0..^ ( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) ) ) )
11714, 15, 16, 17signstcl 30642 . . . . 5  |-  ( ( ( F  |`  (
0..^ ( N  - 
1 ) ) )  e. Word  RR  /\  (
( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  -  1 )  e.  ( 0..^ ( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) ) ) )  ->  ( ( T `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) ) `  (
( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  -  1 ) )  e.  { -u 1 ,  0 ,  1 } )
11895, 116, 117syl2anc 693 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  (
( T `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) ) `  ( ( # `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  - 
1 ) )  e. 
{ -u 1 ,  0 ,  1 } )
11944adantr 481 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  (sgn `  ( F `  ( N  -  1 ) ) )  e.  { -u 1 ,  0 ,  1 } )
120 simpr 477 . . . . . 6  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( F `  ( N  -  1 ) )  =/=  0 )
121 sgn0bi 30609 . . . . . . . 8  |-  ( ( F `  ( N  -  1 ) )  e.  RR*  ->  ( (sgn
`  ( F `  ( N  -  1
) ) )  =  0  <->  ( F `  ( N  -  1
) )  =  0 ) )
122121necon3bid 2838 . . . . . . 7  |-  ( ( F `  ( N  -  1 ) )  e.  RR*  ->  ( (sgn
`  ( F `  ( N  -  1
) ) )  =/=  0  <->  ( F `  ( N  -  1
) )  =/=  0
) )
123122biimpar 502 . . . . . 6  |-  ( ( ( F `  ( N  -  1 ) )  e.  RR*  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
(sgn `  ( F `  ( N  -  1 ) ) )  =/=  0 )
12442, 120, 123syl2anc 693 . . . . 5  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
(sgn `  ( F `  ( N  -  1 ) ) )  =/=  0 )
125124adantr 481 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  (sgn `  ( F `  ( N  -  1 ) ) )  =/=  0
)
12614, 15signswlid 30636 . . . 4  |-  ( ( ( ( ( T `
 ( F  |`  ( 0..^ ( N  - 
1 ) ) ) ) `  ( (
# `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) )  -  1 ) )  e.  { -u 1 ,  0 ,  1 }  /\  (sgn `  ( F `  ( N  -  1 ) ) )  e.  { -u 1 ,  0 ,  1 } )  /\  (sgn `  ( F `  ( N  -  1
) ) )  =/=  0 )  ->  (
( ( T `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) ) `
 ( ( # `  ( F  |`  (
0..^ ( N  - 
1 ) ) ) )  -  1 ) )  .+^  (sgn `  ( F `  ( N  -  1 ) ) ) )  =  (sgn
`  ( F `  ( N  -  1
) ) ) )
127118, 119, 125, 126syl21anc 1325 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  (
( ( T `  ( F  |`  ( 0..^ ( N  -  1 ) ) ) ) `
 ( ( # `  ( F  |`  (
0..^ ( N  - 
1 ) ) ) )  -  1 ) )  .+^  (sgn `  ( F `  ( N  -  1 ) ) ) )  =  (sgn
`  ( F `  ( N  -  1
) ) ) )
12890, 113, 1273eqtrd 2660 . 2  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F `  ( N  -  1
) )  =/=  0
)  /\  N  =/=  1 )  ->  (
( T `  F
) `  ( N  -  1 ) )  =  (sgn `  ( F `  ( N  -  1 ) ) ) )
12948, 128pm2.61dane 2881 1  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  -> 
( ( T `  F ) `  ( N  -  1 ) )  =  (sgn `  ( F `  ( N  -  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   {cpr 4179   {ctp 4181   <.cop 4183    |-> cmpt 4729    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937   RR*cxr 10073    - cmin 10266   -ucneg 10267   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295  sgncsgn 13826   sum_csu 14416   ndxcnx 15854   Basecbs 15857   +g cplusg 15941    gsumg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-sgn 13827  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mulg 17541  df-cntz 17750
This theorem is referenced by:  signsvfpn  30662  signsvfnn  30663
  Copyright terms: Public domain W3C validator