Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem7 Structured version   Visualization version   Unicode version

Theorem erdszelem7 31179
Description: Lemma for erdsze 31184. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdszelem.k  |-  K  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.o  |-  O  Or  RR
erdszelem.a  |-  ( ph  ->  A  e.  ( 1 ... N ) )
erdszelem7.r  |-  ( ph  ->  R  e.  NN )
erdszelem7.m  |-  ( ph  ->  -.  ( K `  A )  e.  ( 1 ... ( R  -  1 ) ) )
Assertion
Ref Expression
erdszelem7  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( R  <_ 
( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) )
Distinct variable groups:    x, y,
s, F    K, s    A, s, x, y    O, s, x, y    R, s, x, y    N, s, x, y    ph, s, x, y
Allowed substitution hints:    K( x, y)

Proof of Theorem erdszelem7
StepHypRef Expression
1 hashf 13125 . . . 4  |-  # : _V
--> ( NN0  u.  { +oo } )
2 ffun 6048 . . . 4  |-  ( # : _V --> ( NN0  u.  { +oo } )  ->  Fun  # )
31, 2ax-mp 5 . . 3  |-  Fun  #
4 erdszelem.a . . . 4  |-  ( ph  ->  A  e.  ( 1 ... N ) )
5 erdsze.n . . . . 5  |-  ( ph  ->  N  e.  NN )
6 erdsze.f . . . . 5  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
7 erdszelem.k . . . . 5  |-  K  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
8 erdszelem.o . . . . 5  |-  O  Or  RR
95, 6, 7, 8erdszelem5 31177 . . . 4  |-  ( (
ph  /\  A  e.  ( 1 ... N
) )  ->  ( K `  A )  e.  ( # " {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } ) )
104, 9mpdan 702 . . 3  |-  ( ph  ->  ( K `  A
)  e.  ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } ) )
11 fvelima 6248 . . 3  |-  ( ( Fun  #  /\  ( K `  A )  e.  ( # " {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } ) )  ->  E. s  e.  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }  ( # `  s )  =  ( K `  A ) )
123, 10, 11sylancr 695 . 2  |-  ( ph  ->  E. s  e.  {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) }  ( # `
 s )  =  ( K `  A
) )
13 eqid 2622 . . . . . 6  |-  { y  e.  ~P ( 1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) }  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
1413erdszelem1 31173 . . . . 5  |-  ( s  e.  { y  e. 
~P ( 1 ... A )  |  ( ( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  /\  A  e.  y ) }  <->  ( s  C_  ( 1 ... A
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) )  /\  A  e.  s ) )
15 simprl1 1106 . . . . . . . . 9  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  s  C_  ( 1 ... A
) )
16 elfzuz3 12339 . . . . . . . . . . 11  |-  ( A  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  A )
)
17 fzss2 12381 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( 1 ... A )  C_  ( 1 ... N
) )
184, 16, 173syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... A
)  C_  ( 1 ... N ) )
1918adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  (
1 ... A )  C_  ( 1 ... N
) )
2015, 19sstrd 3613 . . . . . . . 8  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  s  C_  ( 1 ... N
) )
21 selpw 4165 . . . . . . . 8  |-  ( s  e.  ~P ( 1 ... N )  <->  s  C_  ( 1 ... N
) )
2220, 21sylibr 224 . . . . . . 7  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  s  e.  ~P ( 1 ... N ) )
23 erdszelem7.m . . . . . . . . . . 11  |-  ( ph  ->  -.  ( K `  A )  e.  ( 1 ... ( R  -  1 ) ) )
245, 6, 7, 8erdszelem6 31178 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K : ( 1 ... N ) --> NN )
2524, 4ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( K `  A
)  e.  NN )
26 nnuz 11723 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
2725, 26syl6eleq 2711 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K `  A
)  e.  ( ZZ>= ` 
1 ) )
28 erdszelem7.r . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  NN )
29 nnz 11399 . . . . . . . . . . . . . 14  |-  ( R  e.  NN  ->  R  e.  ZZ )
30 peano2zm 11420 . . . . . . . . . . . . . 14  |-  ( R  e.  ZZ  ->  ( R  -  1 )  e.  ZZ )
3128, 29, 303syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  ( R  -  1 )  e.  ZZ )
32 elfz5 12334 . . . . . . . . . . . . 13  |-  ( ( ( K `  A
)  e.  ( ZZ>= ` 
1 )  /\  ( R  -  1 )  e.  ZZ )  -> 
( ( K `  A )  e.  ( 1 ... ( R  -  1 ) )  <-> 
( K `  A
)  <_  ( R  -  1 ) ) )
3327, 31, 32syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K `  A )  e.  ( 1 ... ( R  -  1 ) )  <-> 
( K `  A
)  <_  ( R  -  1 ) ) )
34 nnltlem1 11444 . . . . . . . . . . . . 13  |-  ( ( ( K `  A
)  e.  NN  /\  R  e.  NN )  ->  ( ( K `  A )  <  R  <->  ( K `  A )  <_  ( R  - 
1 ) ) )
3525, 28, 34syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K `  A )  <  R  <->  ( K `  A )  <_  ( R  - 
1 ) ) )
3633, 35bitr4d 271 . . . . . . . . . . 11  |-  ( ph  ->  ( ( K `  A )  e.  ( 1 ... ( R  -  1 ) )  <-> 
( K `  A
)  <  R )
)
3723, 36mtbid 314 . . . . . . . . . 10  |-  ( ph  ->  -.  ( K `  A )  <  R
)
3828nnred 11035 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  RR )
3913erdszelem2 31174 . . . . . . . . . . . . . 14  |-  ( (
# " { y  e.  ~P ( 1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } )  e.  Fin  /\  ( #
" { y  e. 
~P ( 1 ... A )  |  ( ( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  /\  A  e.  y ) } ) 
C_  NN )
4039simpri 478 . . . . . . . . . . . . 13  |-  ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } )  C_  NN
41 nnssre 11024 . . . . . . . . . . . . 13  |-  NN  C_  RR
4240, 41sstri 3612 . . . . . . . . . . . 12  |-  ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } )  C_  RR
4342, 10sseldi 3601 . . . . . . . . . . 11  |-  ( ph  ->  ( K `  A
)  e.  RR )
4438, 43lenltd 10183 . . . . . . . . . 10  |-  ( ph  ->  ( R  <_  ( K `  A )  <->  -.  ( K `  A
)  <  R )
)
4537, 44mpbird 247 . . . . . . . . 9  |-  ( ph  ->  R  <_  ( K `  A ) )
4645adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  R  <_  ( K `  A
) )
47 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  ( # `
 s )  =  ( K `  A
) )
4846, 47breqtrrd 4681 . . . . . . 7  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  R  <_  ( # `  s
) )
49 simprl2 1107 . . . . . . 7  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F "
s ) ) )
5022, 48, 49jca32 558 . . . . . 6  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  (
s  e.  ~P (
1 ... N )  /\  ( R  <_  ( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F "
s ) ) ) ) )
5150expr 643 . . . . 5  |-  ( (
ph  /\  ( s  C_  ( 1 ... A
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) )  /\  A  e.  s ) )  -> 
( ( # `  s
)  =  ( K `
 A )  -> 
( s  e.  ~P ( 1 ... N
)  /\  ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) ) ) )
5214, 51sylan2b 492 . . . 4  |-  ( (
ph  /\  s  e.  { y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } )  ->  ( ( # `  s )  =  ( K `  A )  ->  ( s  e. 
~P ( 1 ... N )  /\  ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) ) ) )
5352expimpd 629 . . 3  |-  ( ph  ->  ( ( s  e. 
{ y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }  /\  ( # `
 s )  =  ( K `  A
) )  ->  (
s  e.  ~P (
1 ... N )  /\  ( R  <_  ( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F "
s ) ) ) ) ) )
5453reximdv2 3014 . 2  |-  ( ph  ->  ( E. s  e. 
{ y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }  ( # `  s )  =  ( K `  A )  ->  E. s  e.  ~P  ( 1 ... N
) ( R  <_ 
( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) ) )
5512, 54mpd 15 1  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( R  <_ 
( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    u. cun 3572    C_ wss 3574   ~Pcpw 4158   {csn 4177   class class class wbr 4653    |-> cmpt 4729    Or wor 5034    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   Fincfn 7955   supcsup 8346   RRcr 9935   1c1 9937   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  erdszelem11  31183
  Copyright terms: Public domain W3C validator