Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem1 Structured version   Visualization version   Unicode version

Theorem etransclem1 40452
Description:  H is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem1.x  |-  ( ph  ->  X  C_  CC )
etransclem1.p  |-  ( ph  ->  P  e.  NN )
etransclem1.h  |-  H  =  ( j  e.  ( 0 ... M ) 
|->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
etransclem1.j  |-  ( ph  ->  J  e.  ( 0 ... M ) )
Assertion
Ref Expression
etransclem1  |-  ( ph  ->  ( H `  J
) : X --> CC )
Distinct variable groups:    x, J    j, M    P, j    j, X, x    ph, x
Allowed substitution hints:    ph( j)    P( x)    H( x, j)    J( j)    M( x)

Proof of Theorem etransclem1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 etransclem1.x . . . . . 6  |-  ( ph  ->  X  C_  CC )
21sselda 3603 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  CC )
3 etransclem1.j . . . . . . . 8  |-  ( ph  ->  J  e.  ( 0 ... M ) )
43elfzelzd 39530 . . . . . . 7  |-  ( ph  ->  J  e.  ZZ )
54zcnd 11483 . . . . . 6  |-  ( ph  ->  J  e.  CC )
65adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  J  e.  CC )
72, 6subcld 10392 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
x  -  J )  e.  CC )
8 etransclem1.p . . . . . . 7  |-  ( ph  ->  P  e.  NN )
9 nnm1nn0 11334 . . . . . . 7  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
108, 9syl 17 . . . . . 6  |-  ( ph  ->  ( P  -  1 )  e.  NN0 )
118nnnn0d 11351 . . . . . 6  |-  ( ph  ->  P  e.  NN0 )
1210, 11ifcld 4131 . . . . 5  |-  ( ph  ->  if ( J  =  0 ,  ( P  -  1 ) ,  P )  e.  NN0 )
1312adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  if ( J  =  0 ,  ( P  - 
1 ) ,  P
)  e.  NN0 )
147, 13expcld 13008 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  -  J
) ^ if ( J  =  0 ,  ( P  -  1 ) ,  P ) )  e.  CC )
15 eqid 2622 . . 3  |-  ( x  e.  X  |->  ( ( x  -  J ) ^ if ( J  =  0 ,  ( P  -  1 ) ,  P ) ) )  =  ( x  e.  X  |->  ( ( x  -  J ) ^ if ( J  =  0 ,  ( P  -  1 ) ,  P ) ) )
1614, 15fmptd 6385 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( x  -  J ) ^ if ( J  =  0 ,  ( P  - 
1 ) ,  P
) ) ) : X --> CC )
17 etransclem1.h . . . . . 6  |-  H  =  ( j  e.  ( 0 ... M ) 
|->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
18 oveq2 6658 . . . . . . . . 9  |-  ( j  =  n  ->  (
x  -  j )  =  ( x  -  n ) )
19 eqeq1 2626 . . . . . . . . . 10  |-  ( j  =  n  ->  (
j  =  0  <->  n  =  0 ) )
2019ifbid 4108 . . . . . . . . 9  |-  ( j  =  n  ->  if ( j  =  0 ,  ( P  - 
1 ) ,  P
)  =  if ( n  =  0 ,  ( P  -  1 ) ,  P ) )
2118, 20oveq12d 6668 . . . . . . . 8  |-  ( j  =  n  ->  (
( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  =  ( ( x  -  n ) ^ if ( n  =  0 ,  ( P  -  1 ) ,  P ) ) )
2221mpteq2dv 4745 . . . . . . 7  |-  ( j  =  n  ->  (
x  e.  X  |->  ( ( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )  =  ( x  e.  X  |->  ( ( x  -  n
) ^ if ( n  =  0 ,  ( P  -  1 ) ,  P ) ) ) )
2322cbvmptv 4750 . . . . . 6  |-  ( j  e.  ( 0 ... M )  |->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) ) )  =  ( n  e.  ( 0 ... M )  |->  ( x  e.  X  |->  ( ( x  -  n
) ^ if ( n  =  0 ,  ( P  -  1 ) ,  P ) ) ) )
2417, 23eqtri 2644 . . . . 5  |-  H  =  ( n  e.  ( 0 ... M ) 
|->  ( x  e.  X  |->  ( ( x  -  n ) ^ if ( n  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
2524a1i 11 . . . 4  |-  ( ph  ->  H  =  ( n  e.  ( 0 ... M )  |->  ( x  e.  X  |->  ( ( x  -  n ) ^ if ( n  =  0 ,  ( P  -  1 ) ,  P ) ) ) ) )
26 oveq2 6658 . . . . . . 7  |-  ( n  =  J  ->  (
x  -  n )  =  ( x  -  J ) )
27 eqeq1 2626 . . . . . . . 8  |-  ( n  =  J  ->  (
n  =  0  <->  J  =  0 ) )
2827ifbid 4108 . . . . . . 7  |-  ( n  =  J  ->  if ( n  =  0 ,  ( P  - 
1 ) ,  P
)  =  if ( J  =  0 ,  ( P  -  1 ) ,  P ) )
2926, 28oveq12d 6668 . . . . . 6  |-  ( n  =  J  ->  (
( x  -  n
) ^ if ( n  =  0 ,  ( P  -  1 ) ,  P ) )  =  ( ( x  -  J ) ^ if ( J  =  0 ,  ( P  -  1 ) ,  P ) ) )
3029mpteq2dv 4745 . . . . 5  |-  ( n  =  J  ->  (
x  e.  X  |->  ( ( x  -  n
) ^ if ( n  =  0 ,  ( P  -  1 ) ,  P ) ) )  =  ( x  e.  X  |->  ( ( x  -  J
) ^ if ( J  =  0 ,  ( P  -  1 ) ,  P ) ) ) )
3130adantl 482 . . . 4  |-  ( (
ph  /\  n  =  J )  ->  (
x  e.  X  |->  ( ( x  -  n
) ^ if ( n  =  0 ,  ( P  -  1 ) ,  P ) ) )  =  ( x  e.  X  |->  ( ( x  -  J
) ^ if ( J  =  0 ,  ( P  -  1 ) ,  P ) ) ) )
32 cnex 10017 . . . . . 6  |-  CC  e.  _V
3332ssex 4802 . . . . 5  |-  ( X 
C_  CC  ->  X  e. 
_V )
34 mptexg 6484 . . . . 5  |-  ( X  e.  _V  ->  (
x  e.  X  |->  ( ( x  -  J
) ^ if ( J  =  0 ,  ( P  -  1 ) ,  P ) ) )  e.  _V )
351, 33, 343syl 18 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  ( ( x  -  J ) ^ if ( J  =  0 ,  ( P  - 
1 ) ,  P
) ) )  e. 
_V )
3625, 31, 3, 35fvmptd 6288 . . 3  |-  ( ph  ->  ( H `  J
)  =  ( x  e.  X  |->  ( ( x  -  J ) ^ if ( J  =  0 ,  ( P  -  1 ) ,  P ) ) ) )
3736feq1d 6030 . 2  |-  ( ph  ->  ( ( H `  J ) : X --> CC 
<->  ( x  e.  X  |->  ( ( x  -  J ) ^ if ( J  =  0 ,  ( P  - 
1 ) ,  P
) ) ) : X --> CC ) )
3816, 37mpbird 247 1  |-  ( ph  ->  ( H `  J
) : X --> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ifcif 4086    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-exp 12861
This theorem is referenced by:  etransclem29  40480
  Copyright terms: Public domain W3C validator