Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaa2 Structured version   Visualization version   Unicode version

Theorem elaa2 40451
Description: Elementhood in the set of nonzero algebraic numbers: when  A is nonzero, the polynomial  f can be chosen with a nonzero constant term. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 1-Oct-2020.)
Assertion
Ref Expression
elaa2  |-  ( A  e.  ( AA  \  { 0 } )  <-> 
( A  e.  CC  /\ 
E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0 )  =/=  0  /\  ( f `
 A )  =  0 ) ) )
Distinct variable group:    A, f

Proof of Theorem elaa2
Dummy variables  k 
g  z  j  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aasscn 24073 . . . 4  |-  AA  C_  CC
2 eldifi 3732 . . . 4  |-  ( A  e.  ( AA  \  { 0 } )  ->  A  e.  AA )
31, 2sseldi 3601 . . 3  |-  ( A  e.  ( AA  \  { 0 } )  ->  A  e.  CC )
4 elaa 24071 . . . . . 6  |-  ( A  e.  AA  <->  ( A  e.  CC  /\  E. g  e.  ( (Poly `  ZZ )  \  { 0p } ) ( g `
 A )  =  0 ) )
52, 4sylib 208 . . . . 5  |-  ( A  e.  ( AA  \  { 0 } )  ->  ( A  e.  CC  /\  E. g  e.  ( (Poly `  ZZ )  \  { 0p } ) ( g `
 A )  =  0 ) )
65simprd 479 . . . 4  |-  ( A  e.  ( AA  \  { 0 } )  ->  E. g  e.  ( (Poly `  ZZ )  \  { 0p }
) ( g `  A )  =  0 )
723ad2ant1 1082 . . . . . 6  |-  ( ( A  e.  ( AA 
\  { 0 } )  /\  g  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
g `  A )  =  0 )  ->  A  e.  AA )
8 eldifsni 4320 . . . . . . 7  |-  ( A  e.  ( AA  \  { 0 } )  ->  A  =/=  0
)
983ad2ant1 1082 . . . . . 6  |-  ( ( A  e.  ( AA 
\  { 0 } )  /\  g  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
g `  A )  =  0 )  ->  A  =/=  0 )
10 eldifi 3732 . . . . . . 7  |-  ( g  e.  ( (Poly `  ZZ )  \  { 0p } )  -> 
g  e.  (Poly `  ZZ ) )
11103ad2ant2 1083 . . . . . 6  |-  ( ( A  e.  ( AA 
\  { 0 } )  /\  g  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
g `  A )  =  0 )  -> 
g  e.  (Poly `  ZZ ) )
12 eldifsni 4320 . . . . . . 7  |-  ( g  e.  ( (Poly `  ZZ )  \  { 0p } )  -> 
g  =/=  0p )
13123ad2ant2 1083 . . . . . 6  |-  ( ( A  e.  ( AA 
\  { 0 } )  /\  g  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
g `  A )  =  0 )  -> 
g  =/=  0p )
14 simp3 1063 . . . . . 6  |-  ( ( A  e.  ( AA 
\  { 0 } )  /\  g  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
g `  A )  =  0 )  -> 
( g `  A
)  =  0 )
15 fveq2 6191 . . . . . . . . 9  |-  ( m  =  n  ->  (
(coeff `  g ) `  m )  =  ( (coeff `  g ) `  n ) )
1615neeq1d 2853 . . . . . . . 8  |-  ( m  =  n  ->  (
( (coeff `  g
) `  m )  =/=  0  <->  ( (coeff `  g ) `  n
)  =/=  0 ) )
1716cbvrabv 3199 . . . . . . 7  |-  { m  e.  NN0  |  ( (coeff `  g ) `  m
)  =/=  0 }  =  { n  e. 
NN0  |  ( (coeff `  g ) `  n
)  =/=  0 }
1817infeq1i 8384 . . . . . 6  |- inf ( { m  e.  NN0  | 
( (coeff `  g
) `  m )  =/=  0 } ,  RR ,  <  )  = inf ( { n  e.  NN0  |  ( (coeff `  g
) `  n )  =/=  0 } ,  RR ,  <  )
19 oveq1 6657 . . . . . . . 8  |-  ( j  =  k  ->  (
j  + inf ( {
m  e.  NN0  | 
( (coeff `  g
) `  m )  =/=  0 } ,  RR ,  <  ) )  =  ( k  + inf ( { m  e.  NN0  |  ( (coeff `  g
) `  m )  =/=  0 } ,  RR ,  <  ) ) )
2019fveq2d 6195 . . . . . . 7  |-  ( j  =  k  ->  (
(coeff `  g ) `  ( j  + inf ( { m  e.  NN0  |  ( (coeff `  g
) `  m )  =/=  0 } ,  RR ,  <  ) ) )  =  ( (coeff `  g ) `  (
k  + inf ( {
m  e.  NN0  | 
( (coeff `  g
) `  m )  =/=  0 } ,  RR ,  <  ) ) ) )
2120cbvmptv 4750 . . . . . 6  |-  ( j  e.  NN0  |->  ( (coeff `  g ) `  (
j  + inf ( {
m  e.  NN0  | 
( (coeff `  g
) `  m )  =/=  0 } ,  RR ,  <  ) ) ) )  =  ( k  e.  NN0  |->  ( (coeff `  g ) `  (
k  + inf ( {
m  e.  NN0  | 
( (coeff `  g
) `  m )  =/=  0 } ,  RR ,  <  ) ) ) )
22 eqid 2622 . . . . . 6  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (
(deg `  g )  - inf ( { m  e. 
NN0  |  ( (coeff `  g ) `  m
)  =/=  0 } ,  RR ,  <  ) ) ) ( ( ( j  e.  NN0  |->  ( (coeff `  g ) `  ( j  + inf ( { m  e.  NN0  |  ( (coeff `  g
) `  m )  =/=  0 } ,  RR ,  <  ) ) ) ) `  k )  x.  ( z ^
k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( (deg
`  g )  - inf ( { m  e.  NN0  |  ( (coeff `  g
) `  m )  =/=  0 } ,  RR ,  <  ) ) ) ( ( ( j  e.  NN0  |->  ( (coeff `  g ) `  (
j  + inf ( {
m  e.  NN0  | 
( (coeff `  g
) `  m )  =/=  0 } ,  RR ,  <  ) ) ) ) `  k )  x.  ( z ^
k ) ) )
237, 9, 11, 13, 14, 18, 21, 22elaa2lem 40450 . . . . 5  |-  ( ( A  e.  ( AA 
\  { 0 } )  /\  g  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
g `  A )  =  0 )  ->  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0 )  =/=  0  /\  ( f `
 A )  =  0 ) )
2423rexlimdv3a 3033 . . . 4  |-  ( A  e.  ( AA  \  { 0 } )  ->  ( E. g  e.  ( (Poly `  ZZ )  \  { 0p } ) ( g `
 A )  =  0  ->  E. f  e.  (Poly `  ZZ )
( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) ) )
256, 24mpd 15 . . 3  |-  ( A  e.  ( AA  \  { 0 } )  ->  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0 )  =/=  0  /\  ( f `
 A )  =  0 ) )
263, 25jca 554 . 2  |-  ( A  e.  ( AA  \  { 0 } )  ->  ( A  e.  CC  /\  E. f  e.  (Poly `  ZZ )
( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) ) )
27 simpl 473 . . . . . . . . 9  |-  ( ( f  e.  (Poly `  ZZ )  /\  (
(coeff `  f ) `  0 )  =/=  0 )  ->  f  e.  (Poly `  ZZ )
)
28 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( f  =  0p  -> 
(coeff `  f )  =  (coeff `  0p
) )
29 coe0 24012 . . . . . . . . . . . . . . 15  |-  (coeff ` 
0p )  =  ( NN0  X.  {
0 } )
3028, 29syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( f  =  0p  -> 
(coeff `  f )  =  ( NN0  X.  { 0 } ) )
3130fveq1d 6193 . . . . . . . . . . . . 13  |-  ( f  =  0p  -> 
( (coeff `  f
) `  0 )  =  ( ( NN0 
X.  { 0 } ) `  0 ) )
32 0nn0 11307 . . . . . . . . . . . . . 14  |-  0  e.  NN0
33 fvconst2g 6467 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  NN0  /\  0  e.  NN0 )  -> 
( ( NN0  X.  { 0 } ) `
 0 )  =  0 )
3432, 32, 33mp2an 708 . . . . . . . . . . . . 13  |-  ( ( NN0  X.  { 0 } ) `  0
)  =  0
3531, 34syl6eq 2672 . . . . . . . . . . . 12  |-  ( f  =  0p  -> 
( (coeff `  f
) `  0 )  =  0 )
3635adantl 482 . . . . . . . . . . 11  |-  ( ( ( f  e.  (Poly `  ZZ )  /\  (
(coeff `  f ) `  0 )  =/=  0 )  /\  f  =  0p )  ->  ( (coeff `  f ) `  0
)  =  0 )
37 neneq 2800 . . . . . . . . . . . 12  |-  ( ( (coeff `  f ) `  0 )  =/=  0  ->  -.  (
(coeff `  f ) `  0 )  =  0 )
3837ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( f  e.  (Poly `  ZZ )  /\  (
(coeff `  f ) `  0 )  =/=  0 )  /\  f  =  0p )  ->  -.  ( (coeff `  f ) `  0
)  =  0 )
3936, 38pm2.65da 600 . . . . . . . . . 10  |-  ( ( f  e.  (Poly `  ZZ )  /\  (
(coeff `  f ) `  0 )  =/=  0 )  ->  -.  f  =  0p
)
40 velsn 4193 . . . . . . . . . 10  |-  ( f  e.  { 0p }  <->  f  =  0p )
4139, 40sylnibr 319 . . . . . . . . 9  |-  ( ( f  e.  (Poly `  ZZ )  /\  (
(coeff `  f ) `  0 )  =/=  0 )  ->  -.  f  e.  { 0p } )
4227, 41eldifd 3585 . . . . . . . 8  |-  ( ( f  e.  (Poly `  ZZ )  /\  (
(coeff `  f ) `  0 )  =/=  0 )  ->  f  e.  ( (Poly `  ZZ )  \  { 0p } ) )
4342adantrr 753 . . . . . . 7  |-  ( ( f  e.  (Poly `  ZZ )  /\  (
( (coeff `  f
) `  0 )  =/=  0  /\  (
f `  A )  =  0 ) )  ->  f  e.  ( (Poly `  ZZ )  \  { 0p }
) )
44 simprr 796 . . . . . . 7  |-  ( ( f  e.  (Poly `  ZZ )  /\  (
( (coeff `  f
) `  0 )  =/=  0  /\  (
f `  A )  =  0 ) )  ->  ( f `  A )  =  0 )
4543, 44jca 554 . . . . . 6  |-  ( ( f  e.  (Poly `  ZZ )  /\  (
( (coeff `  f
) `  0 )  =/=  0  /\  (
f `  A )  =  0 ) )  ->  ( f  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  (
f `  A )  =  0 ) )
4645reximi2 3010 . . . . 5  |-  ( E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 )  ->  E. f  e.  ( (Poly `  ZZ )  \  { 0p }
) ( f `  A )  =  0 )
4746anim2i 593 . . . 4  |-  ( ( A  e.  CC  /\  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) )  ->  ( A  e.  CC  /\  E. f  e.  ( (Poly `  ZZ )  \  { 0p } ) ( f `
 A )  =  0 ) )
48 elaa 24071 . . . 4  |-  ( A  e.  AA  <->  ( A  e.  CC  /\  E. f  e.  ( (Poly `  ZZ )  \  { 0p } ) ( f `
 A )  =  0 ) )
4947, 48sylibr 224 . . 3  |-  ( ( A  e.  CC  /\  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) )  ->  A  e.  AA )
50 simpr 477 . . . 4  |-  ( ( A  e.  CC  /\  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) )  ->  E. f  e.  (Poly `  ZZ )
( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) )
51 nfv 1843 . . . . . 6  |-  F/ f  A  e.  CC
52 nfre1 3005 . . . . . 6  |-  F/ f E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0 )  =/=  0  /\  ( f `
 A )  =  0 )
5351, 52nfan 1828 . . . . 5  |-  F/ f ( A  e.  CC  /\ 
E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0 )  =/=  0  /\  ( f `
 A )  =  0 ) )
54 nfv 1843 . . . . 5  |-  F/ f  -.  A  e.  {
0 }
55 simpl3r 1117 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  f  e.  (Poly `  ZZ )  /\  (
( (coeff `  f
) `  0 )  =/=  0  /\  (
f `  A )  =  0 ) )  /\  A  =  0 )  ->  ( f `  A )  =  0 )
56 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( A  =  0  ->  (
f `  A )  =  ( f ` 
0 ) )
57 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (coeff `  f )  =  (coeff `  f )
5857coefv0 24004 . . . . . . . . . . . . . . 15  |-  ( f  e.  (Poly `  ZZ )  ->  ( f ` 
0 )  =  ( (coeff `  f ) `  0 ) )
5956, 58sylan9eqr 2678 . . . . . . . . . . . . . 14  |-  ( ( f  e.  (Poly `  ZZ )  /\  A  =  0 )  ->  (
f `  A )  =  ( (coeff `  f ) `  0
) )
6059adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( f  e.  (Poly `  ZZ )  /\  (
(coeff `  f ) `  0 )  =/=  0 )  /\  A  =  0 )  -> 
( f `  A
)  =  ( (coeff `  f ) `  0
) )
61 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( f  e.  (Poly `  ZZ )  /\  (
(coeff `  f ) `  0 )  =/=  0 )  /\  A  =  0 )  -> 
( (coeff `  f
) `  0 )  =/=  0 )
6260, 61eqnetrd 2861 . . . . . . . . . . . 12  |-  ( ( ( f  e.  (Poly `  ZZ )  /\  (
(coeff `  f ) `  0 )  =/=  0 )  /\  A  =  0 )  -> 
( f `  A
)  =/=  0 )
6362neneqd 2799 . . . . . . . . . . 11  |-  ( ( ( f  e.  (Poly `  ZZ )  /\  (
(coeff `  f ) `  0 )  =/=  0 )  /\  A  =  0 )  ->  -.  ( f `  A
)  =  0 )
6463adantlrr 757 . . . . . . . . . 10  |-  ( ( ( f  e.  (Poly `  ZZ )  /\  (
( (coeff `  f
) `  0 )  =/=  0  /\  (
f `  A )  =  0 ) )  /\  A  =  0 )  ->  -.  (
f `  A )  =  0 )
65643adantl1 1217 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  f  e.  (Poly `  ZZ )  /\  (
( (coeff `  f
) `  0 )  =/=  0  /\  (
f `  A )  =  0 ) )  /\  A  =  0 )  ->  -.  (
f `  A )  =  0 )
6655, 65pm2.65da 600 . . . . . . . 8  |-  ( ( A  e.  CC  /\  f  e.  (Poly `  ZZ )  /\  ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) )  ->  -.  A  =  0 )
67 elsng 4191 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  e.  { 0 } 
<->  A  =  0 ) )
6867biimpa 501 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  e.  { 0 } )  ->  A  =  0 )
69683ad2antl1 1223 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  f  e.  (Poly `  ZZ )  /\  (
( (coeff `  f
) `  0 )  =/=  0  /\  (
f `  A )  =  0 ) )  /\  A  e.  {
0 } )  ->  A  =  0 )
7066, 69mtand 691 . . . . . . 7  |-  ( ( A  e.  CC  /\  f  e.  (Poly `  ZZ )  /\  ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) )  ->  -.  A  e.  { 0 } )
71703exp 1264 . . . . . 6  |-  ( A  e.  CC  ->  (
f  e.  (Poly `  ZZ )  ->  ( ( ( (coeff `  f
) `  0 )  =/=  0  /\  (
f `  A )  =  0 )  ->  -.  A  e.  { 0 } ) ) )
7271adantr 481 . . . . 5  |-  ( ( A  e.  CC  /\  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) )  ->  ( f  e.  (Poly `  ZZ )  ->  ( ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 )  ->  -.  A  e.  { 0 } ) ) )
7353, 54, 72rexlimd 3026 . . . 4  |-  ( ( A  e.  CC  /\  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) )  ->  ( E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 )  ->  -.  A  e.  { 0 } ) )
7450, 73mpd 15 . . 3  |-  ( ( A  e.  CC  /\  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) )  ->  -.  A  e.  { 0 } )
7549, 74eldifd 3585 . 2  |-  ( ( A  e.  CC  /\  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 ) )  ->  A  e.  ( AA  \  { 0 } ) )
7626, 75impbii 199 1  |-  ( A  e.  ( AA  \  { 0 } )  <-> 
( A  e.  CC  /\ 
E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0 )  =/=  0  /\  ( f `
 A )  =  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    \ cdif 3571   {csn 4177    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   NN0cn0 11292   ZZcz 11377   ...cfz 12326   ^cexp 12860   sum_csu 14416   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943   AAcaa 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947  df-aa 24070
This theorem is referenced by:  etransc  40500
  Copyright terms: Public domain W3C validator