Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem2 Structured version   Visualization version   Unicode version

Theorem etransclem2 40453
Description: Derivative of  G. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem2.xf  |-  F/_ x F
etransclem2.f  |-  ( ph  ->  F : RR --> CC )
etransclem2.dvnf  |-  ( (
ph  /\  i  e.  ( 0 ... ( R  +  1 ) ) )  ->  (
( RR  Dn
F ) `  i
) : RR --> CC )
etransclem2.g  |-  G  =  ( x  e.  RR  |->  sum_ i  e.  ( 0 ... R ) ( ( ( RR  Dn F ) `  i ) `  x
) )
Assertion
Ref Expression
etransclem2  |-  ( ph  ->  ( RR  _D  G
)  =  ( x  e.  RR  |->  sum_ i  e.  ( 0 ... R
) ( ( ( RR  Dn F ) `  ( i  +  1 ) ) `
 x ) ) )
Distinct variable groups:    i, F    R, i, x    ph, i, x
Allowed substitution hints:    F( x)    G( x, i)

Proof of Theorem etransclem2
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 etransclem2.g . . 3  |-  G  =  ( x  e.  RR  |->  sum_ i  e.  ( 0 ... R ) ( ( ( RR  Dn F ) `  i ) `  x
) )
21oveq2i 6661 . 2  |-  ( RR 
_D  G )  =  ( RR  _D  (
x  e.  RR  |->  sum_ i  e.  ( 0 ... R ) ( ( ( RR  Dn F ) `  i ) `  x
) ) )
3 eqid 2622 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
43tgioo2 22606 . . 3  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
5 reelprrecn 10028 . . . 4  |-  RR  e.  { RR ,  CC }
65a1i 11 . . 3  |-  ( ph  ->  RR  e.  { RR ,  CC } )
7 reopn 39501 . . . 4  |-  RR  e.  ( topGen `  ran  (,) )
87a1i 11 . . 3  |-  ( ph  ->  RR  e.  ( topGen ` 
ran  (,) ) )
9 fzfid 12772 . . 3  |-  ( ph  ->  ( 0 ... R
)  e.  Fin )
10 fzelp1 12393 . . . . . 6  |-  ( i  e.  ( 0 ... R )  ->  i  e.  ( 0 ... ( R  +  1 ) ) )
11 etransclem2.dvnf . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0 ... ( R  +  1 ) ) )  ->  (
( RR  Dn
F ) `  i
) : RR --> CC )
1210, 11sylan2 491 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  (
( RR  Dn
F ) `  i
) : RR --> CC )
13123adant3 1081 . . . 4  |-  ( (
ph  /\  i  e.  ( 0 ... R
)  /\  x  e.  RR )  ->  ( ( RR  Dn F ) `  i ) : RR --> CC )
14 simp3 1063 . . . 4  |-  ( (
ph  /\  i  e.  ( 0 ... R
)  /\  x  e.  RR )  ->  x  e.  RR )
1513, 14ffvelrnd 6360 . . 3  |-  ( (
ph  /\  i  e.  ( 0 ... R
)  /\  x  e.  RR )  ->  ( ( ( RR  Dn
F ) `  i
) `  x )  e.  CC )
16 fzp1elp1 12394 . . . . . 6  |-  ( i  e.  ( 0 ... R )  ->  (
i  +  1 )  e.  ( 0 ... ( R  +  1 ) ) )
17 ovex 6678 . . . . . . 7  |-  ( i  +  1 )  e. 
_V
18 eleq1 2689 . . . . . . . . 9  |-  ( j  =  ( i  +  1 )  ->  (
j  e.  ( 0 ... ( R  + 
1 ) )  <->  ( i  +  1 )  e.  ( 0 ... ( R  +  1 ) ) ) )
1918anbi2d 740 . . . . . . . 8  |-  ( j  =  ( i  +  1 )  ->  (
( ph  /\  j  e.  ( 0 ... ( R  +  1 ) ) )  <->  ( ph  /\  ( i  +  1 )  e.  ( 0 ... ( R  + 
1 ) ) ) ) )
20 fveq2 6191 . . . . . . . . 9  |-  ( j  =  ( i  +  1 )  ->  (
( RR  Dn
F ) `  j
)  =  ( ( RR  Dn F ) `  ( i  +  1 ) ) )
2120feq1d 6030 . . . . . . . 8  |-  ( j  =  ( i  +  1 )  ->  (
( ( RR  Dn F ) `  j ) : RR --> CC 
<->  ( ( RR  Dn F ) `  ( i  +  1 ) ) : RR --> CC ) )
2219, 21imbi12d 334 . . . . . . 7  |-  ( j  =  ( i  +  1 )  ->  (
( ( ph  /\  j  e.  ( 0 ... ( R  + 
1 ) ) )  ->  ( ( RR  Dn F ) `
 j ) : RR --> CC )  <->  ( ( ph  /\  ( i  +  1 )  e.  ( 0 ... ( R  +  1 ) ) )  ->  ( ( RR  Dn F ) `
 ( i  +  1 ) ) : RR --> CC ) ) )
23 eleq1 2689 . . . . . . . . . 10  |-  ( i  =  j  ->  (
i  e.  ( 0 ... ( R  + 
1 ) )  <->  j  e.  ( 0 ... ( R  +  1 ) ) ) )
2423anbi2d 740 . . . . . . . . 9  |-  ( i  =  j  ->  (
( ph  /\  i  e.  ( 0 ... ( R  +  1 ) ) )  <->  ( ph  /\  j  e.  ( 0 ... ( R  + 
1 ) ) ) ) )
25 fveq2 6191 . . . . . . . . . 10  |-  ( i  =  j  ->  (
( RR  Dn
F ) `  i
)  =  ( ( RR  Dn F ) `  j ) )
2625feq1d 6030 . . . . . . . . 9  |-  ( i  =  j  ->  (
( ( RR  Dn F ) `  i ) : RR --> CC 
<->  ( ( RR  Dn F ) `  j ) : RR --> CC ) )
2724, 26imbi12d 334 . . . . . . . 8  |-  ( i  =  j  ->  (
( ( ph  /\  i  e.  ( 0 ... ( R  + 
1 ) ) )  ->  ( ( RR  Dn F ) `
 i ) : RR --> CC )  <->  ( ( ph  /\  j  e.  ( 0 ... ( R  +  1 ) ) )  ->  ( ( RR  Dn F ) `
 j ) : RR --> CC ) ) )
2827, 11chvarv 2263 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... ( R  +  1 ) ) )  ->  (
( RR  Dn
F ) `  j
) : RR --> CC )
2917, 22, 28vtocl 3259 . . . . . 6  |-  ( (
ph  /\  ( i  +  1 )  e.  ( 0 ... ( R  +  1 ) ) )  ->  (
( RR  Dn
F ) `  (
i  +  1 ) ) : RR --> CC )
3016, 29sylan2 491 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  (
( RR  Dn
F ) `  (
i  +  1 ) ) : RR --> CC )
31303adant3 1081 . . . 4  |-  ( (
ph  /\  i  e.  ( 0 ... R
)  /\  x  e.  RR )  ->  ( ( RR  Dn F ) `  ( i  +  1 ) ) : RR --> CC )
3231, 14ffvelrnd 6360 . . 3  |-  ( (
ph  /\  i  e.  ( 0 ... R
)  /\  x  e.  RR )  ->  ( ( ( RR  Dn
F ) `  (
i  +  1 ) ) `  x )  e.  CC )
33 ffn 6045 . . . . . . . 8  |-  ( ( ( RR  Dn
F ) `  i
) : RR --> CC  ->  ( ( RR  Dn
F ) `  i
)  Fn  RR )
3412, 33syl 17 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  (
( RR  Dn
F ) `  i
)  Fn  RR )
35 nfcv 2764 . . . . . . . . . 10  |-  F/_ x RR
36 nfcv 2764 . . . . . . . . . 10  |-  F/_ x  Dn
37 etransclem2.xf . . . . . . . . . 10  |-  F/_ x F
3835, 36, 37nfov 6676 . . . . . . . . 9  |-  F/_ x
( RR  Dn
F )
39 nfcv 2764 . . . . . . . . 9  |-  F/_ x
i
4038, 39nffv 6198 . . . . . . . 8  |-  F/_ x
( ( RR  Dn F ) `  i )
4140dffn5f 6252 . . . . . . 7  |-  ( ( ( RR  Dn
F ) `  i
)  Fn  RR  <->  ( ( RR  Dn F ) `
 i )  =  ( x  e.  RR  |->  ( ( ( RR  Dn F ) `
 i ) `  x ) ) )
4234, 41sylib 208 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  (
( RR  Dn
F ) `  i
)  =  ( x  e.  RR  |->  ( ( ( RR  Dn
F ) `  i
) `  x )
) )
4342eqcomd 2628 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  (
x  e.  RR  |->  ( ( ( RR  Dn F ) `  i ) `  x
) )  =  ( ( RR  Dn
F ) `  i
) )
4443oveq2d 6666 . . . 4  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  ( RR  _D  ( x  e.  RR  |->  ( ( ( RR  Dn F ) `  i ) `
 x ) ) )  =  ( RR 
_D  ( ( RR  Dn F ) `
 i ) ) )
45 ax-resscn 9993 . . . . . 6  |-  RR  C_  CC
4645a1i 11 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  RR  C_  CC )
47 etransclem2.f . . . . . . . 8  |-  ( ph  ->  F : RR --> CC )
48 ffdm 6062 . . . . . . . 8  |-  ( F : RR --> CC  ->  ( F : dom  F --> CC  /\  dom  F  C_  RR ) )
4947, 48syl 17 . . . . . . 7  |-  ( ph  ->  ( F : dom  F --> CC  /\  dom  F  C_  RR ) )
50 cnex 10017 . . . . . . . . 9  |-  CC  e.  _V
5150a1i 11 . . . . . . . 8  |-  ( ph  ->  CC  e.  _V )
52 reex 10027 . . . . . . . 8  |-  RR  e.  _V
53 elpm2g 7874 . . . . . . . 8  |-  ( ( CC  e.  _V  /\  RR  e.  _V )  -> 
( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F  C_  RR ) ) )
5451, 52, 53sylancl 694 . . . . . . 7  |-  ( ph  ->  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F  C_  RR ) ) )
5549, 54mpbird 247 . . . . . 6  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
5655adantr 481 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  F  e.  ( CC  ^pm  RR ) )
57 elfznn0 12433 . . . . . 6  |-  ( i  e.  ( 0 ... R )  ->  i  e.  NN0 )
5857adantl 482 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  i  e.  NN0 )
59 dvnp1 23688 . . . . 5  |-  ( ( RR  C_  CC  /\  F  e.  ( CC  ^pm  RR )  /\  i  e.  NN0 )  ->  ( ( RR  Dn F ) `
 ( i  +  1 ) )  =  ( RR  _D  (
( RR  Dn
F ) `  i
) ) )
6046, 56, 58, 59syl3anc 1326 . . . 4  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  (
( RR  Dn
F ) `  (
i  +  1 ) )  =  ( RR 
_D  ( ( RR  Dn F ) `
 i ) ) )
61 ffn 6045 . . . . . 6  |-  ( ( ( RR  Dn
F ) `  (
i  +  1 ) ) : RR --> CC  ->  ( ( RR  Dn
F ) `  (
i  +  1 ) )  Fn  RR )
6230, 61syl 17 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  (
( RR  Dn
F ) `  (
i  +  1 ) )  Fn  RR )
63 nfcv 2764 . . . . . . 7  |-  F/_ x
( i  +  1 )
6438, 63nffv 6198 . . . . . 6  |-  F/_ x
( ( RR  Dn F ) `  ( i  +  1 ) )
6564dffn5f 6252 . . . . 5  |-  ( ( ( RR  Dn
F ) `  (
i  +  1 ) )  Fn  RR  <->  ( ( RR  Dn F ) `
 ( i  +  1 ) )  =  ( x  e.  RR  |->  ( ( ( RR  Dn F ) `
 ( i  +  1 ) ) `  x ) ) )
6662, 65sylib 208 . . . 4  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  (
( RR  Dn
F ) `  (
i  +  1 ) )  =  ( x  e.  RR  |->  ( ( ( RR  Dn
F ) `  (
i  +  1 ) ) `  x ) ) )
6744, 60, 663eqtr2d 2662 . . 3  |-  ( (
ph  /\  i  e.  ( 0 ... R
) )  ->  ( RR  _D  ( x  e.  RR  |->  ( ( ( RR  Dn F ) `  i ) `
 x ) ) )  =  ( x  e.  RR  |->  ( ( ( RR  Dn
F ) `  (
i  +  1 ) ) `  x ) ) )
684, 3, 6, 8, 9, 15, 32, 67dvmptfsum 23738 . 2  |-  ( ph  ->  ( RR  _D  (
x  e.  RR  |->  sum_ i  e.  ( 0 ... R ) ( ( ( RR  Dn F ) `  i ) `  x
) ) )  =  ( x  e.  RR  |->  sum_ i  e.  ( 0 ... R ) ( ( ( RR  Dn F ) `  ( i  +  1 ) ) `  x
) ) )
692, 68syl5eq 2668 1  |-  ( ph  ->  ( RR  _D  G
)  =  ( x  e.  RR  |->  sum_ i  e.  ( 0 ... R
) ( ( ( RR  Dn F ) `  ( i  +  1 ) ) `
 x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200    C_ wss 3574   {cpr 4179    |-> cmpt 4729   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292   (,)cioo 12175   ...cfz 12326   sum_csu 14416   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746    _D cdv 23627    Dncdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  etransclem46  40497
  Copyright terms: Public domain W3C validator