MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcl2lem Structured version   Visualization version   Unicode version

Theorem expcl2lem 12872
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
expcllem.1  |-  F  C_  CC
expcllem.2  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
expcllem.3  |-  1  e.  F
expcl2lem.4  |-  ( ( x  e.  F  /\  x  =/=  0 )  -> 
( 1  /  x
)  e.  F )
Assertion
Ref Expression
expcl2lem  |-  ( ( A  e.  F  /\  A  =/=  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
Distinct variable groups:    x, y, A    x, B    x, F, y
Allowed substitution hint:    B( y)

Proof of Theorem expcl2lem
StepHypRef Expression
1 elznn0nn 11391 . . 3  |-  ( B  e.  ZZ  <->  ( B  e.  NN0  \/  ( B  e.  RR  /\  -u B  e.  NN ) ) )
2 expcllem.1 . . . . . . 7  |-  F  C_  CC
3 expcllem.2 . . . . . . 7  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
4 expcllem.3 . . . . . . 7  |-  1  e.  F
52, 3, 4expcllem 12871 . . . . . 6  |-  ( ( A  e.  F  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  F )
65ex 450 . . . . 5  |-  ( A  e.  F  ->  ( B  e.  NN0  ->  ( A ^ B )  e.  F ) )
76adantr 481 . . . 4  |-  ( ( A  e.  F  /\  A  =/=  0 )  -> 
( B  e.  NN0  ->  ( A ^ B
)  e.  F ) )
8 simpll 790 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  F )
92, 8sseldi 3601 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  CC )
10 simprl 794 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  B  e.  RR )
1110recnd 10068 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  B  e.  CC )
12 nnnn0 11299 . . . . . . . 8  |-  ( -u B  e.  NN  ->  -u B  e.  NN0 )
1312ad2antll 765 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  -u B  e.  NN0 )
14 expneg2 12869 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  -u B  e.  NN0 )  ->  ( A ^ B )  =  ( 1  /  ( A ^ -u B ) ) )
159, 11, 13, 14syl3anc 1326 . . . . . 6  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ B
)  =  ( 1  /  ( A ^ -u B ) ) )
16 difss 3737 . . . . . . . 8  |-  ( F 
\  { 0 } )  C_  F
17 simpl 473 . . . . . . . . . 10  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A  e.  F  /\  A  =/=  0
) )
18 eldifsn 4317 . . . . . . . . . 10  |-  ( A  e.  ( F  \  { 0 } )  <-> 
( A  e.  F  /\  A  =/=  0
) )
1917, 18sylibr 224 . . . . . . . . 9  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  ( F  \  { 0 } ) )
2016, 2sstri 3612 . . . . . . . . . 10  |-  ( F 
\  { 0 } )  C_  CC
2116sseli 3599 . . . . . . . . . . . 12  |-  ( x  e.  ( F  \  { 0 } )  ->  x  e.  F
)
2216sseli 3599 . . . . . . . . . . . 12  |-  ( y  e.  ( F  \  { 0 } )  ->  y  e.  F
)
2321, 22, 3syl2an 494 . . . . . . . . . . 11  |-  ( ( x  e.  ( F 
\  { 0 } )  /\  y  e.  ( F  \  {
0 } ) )  ->  ( x  x.  y )  e.  F
)
24 eldifsn 4317 . . . . . . . . . . . . 13  |-  ( x  e.  ( F  \  { 0 } )  <-> 
( x  e.  F  /\  x  =/=  0
) )
252sseli 3599 . . . . . . . . . . . . . 14  |-  ( x  e.  F  ->  x  e.  CC )
2625anim1i 592 . . . . . . . . . . . . 13  |-  ( ( x  e.  F  /\  x  =/=  0 )  -> 
( x  e.  CC  /\  x  =/=  0 ) )
2724, 26sylbi 207 . . . . . . . . . . . 12  |-  ( x  e.  ( F  \  { 0 } )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
28 eldifsn 4317 . . . . . . . . . . . . 13  |-  ( y  e.  ( F  \  { 0 } )  <-> 
( y  e.  F  /\  y  =/=  0
) )
292sseli 3599 . . . . . . . . . . . . . 14  |-  ( y  e.  F  ->  y  e.  CC )
3029anim1i 592 . . . . . . . . . . . . 13  |-  ( ( y  e.  F  /\  y  =/=  0 )  -> 
( y  e.  CC  /\  y  =/=  0 ) )
3128, 30sylbi 207 . . . . . . . . . . . 12  |-  ( y  e.  ( F  \  { 0 } )  ->  ( y  e.  CC  /\  y  =/=  0 ) )
32 mulne0 10669 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( y  e.  CC  /\  y  =/=  0 ) )  -> 
( x  x.  y
)  =/=  0 )
3327, 31, 32syl2an 494 . . . . . . . . . . 11  |-  ( ( x  e.  ( F 
\  { 0 } )  /\  y  e.  ( F  \  {
0 } ) )  ->  ( x  x.  y )  =/=  0
)
34 eldifsn 4317 . . . . . . . . . . 11  |-  ( ( x  x.  y )  e.  ( F  \  { 0 } )  <-> 
( ( x  x.  y )  e.  F  /\  ( x  x.  y
)  =/=  0 ) )
3523, 33, 34sylanbrc 698 . . . . . . . . . 10  |-  ( ( x  e.  ( F 
\  { 0 } )  /\  y  e.  ( F  \  {
0 } ) )  ->  ( x  x.  y )  e.  ( F  \  { 0 } ) )
36 ax-1ne0 10005 . . . . . . . . . . 11  |-  1  =/=  0
37 eldifsn 4317 . . . . . . . . . . 11  |-  ( 1  e.  ( F  \  { 0 } )  <-> 
( 1  e.  F  /\  1  =/=  0
) )
384, 36, 37mpbir2an 955 . . . . . . . . . 10  |-  1  e.  ( F  \  {
0 } )
3920, 35, 38expcllem 12871 . . . . . . . . 9  |-  ( ( A  e.  ( F 
\  { 0 } )  /\  -u B  e.  NN0 )  ->  ( A ^ -u B )  e.  ( F  \  { 0 } ) )
4019, 13, 39syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ -u B
)  e.  ( F 
\  { 0 } ) )
4116, 40sseldi 3601 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ -u B
)  e.  F )
42 eldifsn 4317 . . . . . . . . 9  |-  ( ( A ^ -u B
)  e.  ( F 
\  { 0 } )  <->  ( ( A ^ -u B )  e.  F  /\  ( A ^ -u B )  =/=  0 ) )
4340, 42sylib 208 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( ( A ^ -u B )  e.  F  /\  ( A ^ -u B
)  =/=  0 ) )
4443simprd 479 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ -u B
)  =/=  0 )
45 neeq1 2856 . . . . . . . . 9  |-  ( x  =  ( A ^ -u B )  ->  (
x  =/=  0  <->  ( A ^ -u B )  =/=  0 ) )
46 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  ( A ^ -u B )  ->  (
1  /  x )  =  ( 1  / 
( A ^ -u B
) ) )
4746eleq1d 2686 . . . . . . . . 9  |-  ( x  =  ( A ^ -u B )  ->  (
( 1  /  x
)  e.  F  <->  ( 1  /  ( A ^ -u B ) )  e.  F ) )
4845, 47imbi12d 334 . . . . . . . 8  |-  ( x  =  ( A ^ -u B )  ->  (
( x  =/=  0  ->  ( 1  /  x
)  e.  F )  <-> 
( ( A ^ -u B )  =/=  0  ->  ( 1  /  ( A ^ -u B ) )  e.  F ) ) )
49 expcl2lem.4 . . . . . . . . 9  |-  ( ( x  e.  F  /\  x  =/=  0 )  -> 
( 1  /  x
)  e.  F )
5049ex 450 . . . . . . . 8  |-  ( x  e.  F  ->  (
x  =/=  0  -> 
( 1  /  x
)  e.  F ) )
5148, 50vtoclga 3272 . . . . . . 7  |-  ( ( A ^ -u B
)  e.  F  -> 
( ( A ^ -u B )  =/=  0  ->  ( 1  /  ( A ^ -u B ) )  e.  F ) )
5241, 44, 51sylc 65 . . . . . 6  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( 1  /  ( A ^ -u B ) )  e.  F )
5315, 52eqeltrd 2701 . . . . 5  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ B
)  e.  F )
5453ex 450 . . . 4  |-  ( ( A  e.  F  /\  A  =/=  0 )  -> 
( ( B  e.  RR  /\  -u B  e.  NN )  ->  ( A ^ B )  e.  F ) )
557, 54jaod 395 . . 3  |-  ( ( A  e.  F  /\  A  =/=  0 )  -> 
( ( B  e. 
NN0  \/  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ B
)  e.  F ) )
561, 55syl5bi 232 . 2  |-  ( ( A  e.  F  /\  A  =/=  0 )  -> 
( B  e.  ZZ  ->  ( A ^ B
)  e.  F ) )
57563impia 1261 1  |-  ( ( A  e.  F  /\  A  =/=  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574   {csn 4177  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  rpexpcl  12879  reexpclz  12880  qexpclz  12881  m1expcl2  12882  expclzlem  12884  1exp  12889
  Copyright terms: Public domain W3C validator