Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem34 Structured version   Visualization version   Unicode version

Theorem fourierdlem34 40358
Description: A partition is one to one. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem34.p  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
fourierdlem34.m  |-  ( ph  ->  M  e.  NN )
fourierdlem34.q  |-  ( ph  ->  Q  e.  ( P `
 M ) )
Assertion
Ref Expression
fourierdlem34  |-  ( ph  ->  Q : ( 0 ... M ) -1-1-> RR )
Distinct variable groups:    A, m, p    B, m, p    i, M, m, p    Q, i, p    ph, i
Allowed substitution hints:    ph( m, p)    A( i)    B( i)    P( i, m, p)    Q( m)

Proof of Theorem fourierdlem34
Dummy variables  k 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem34.q . . . . 5  |-  ( ph  ->  Q  e.  ( P `
 M ) )
2 fourierdlem34.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
3 fourierdlem34.p . . . . . . 7  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
43fourierdlem2 40326 . . . . . 6  |-  ( M  e.  NN  ->  ( Q  e.  ( P `  M )  <->  ( Q  e.  ( RR  ^m  (
0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
52, 4syl 17 . . . . 5  |-  ( ph  ->  ( Q  e.  ( P `  M )  <-> 
( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
61, 5mpbid 222 . . . 4  |-  ( ph  ->  ( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) )
76simpld 475 . . 3  |-  ( ph  ->  Q  e.  ( RR 
^m  ( 0 ... M ) ) )
8 elmapi 7879 . . 3  |-  ( Q  e.  ( RR  ^m  ( 0 ... M
) )  ->  Q : ( 0 ... M ) --> RR )
97, 8syl 17 . 2  |-  ( ph  ->  Q : ( 0 ... M ) --> RR )
10 simplr 792 . . . . . 6  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  ( Q `
 i )  =  ( Q `  j
) )  /\  -.  i  =  j )  ->  ( Q `  i
)  =  ( Q `
 j ) )
119ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  ( Q `  i )  e.  RR )
1211ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  < 
j )  ->  ( Q `  i )  e.  RR )
139ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  ( Q `  k )  e.  RR )
1413ad4ant14 1293 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  k  e.  ( 0 ... M
) )  ->  ( Q `  k )  e.  RR )
1514adantllr 755 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  < 
j )  /\  k  e.  ( 0 ... M
) )  ->  ( Q `  k )  e.  RR )
16 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( i  =  k  ->  (
i  e.  ( 0..^ M )  <->  k  e.  ( 0..^ M ) ) )
1716anbi2d 740 . . . . . . . . . . . . . . . 16  |-  ( i  =  k  ->  (
( ph  /\  i  e.  ( 0..^ M ) )  <->  ( ph  /\  k  e.  ( 0..^ M ) ) ) )
18 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( i  =  k  ->  ( Q `  i )  =  ( Q `  k ) )
19 oveq1 6657 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  k  ->  (
i  +  1 )  =  ( k  +  1 ) )
2019fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( i  =  k  ->  ( Q `  ( i  +  1 ) )  =  ( Q `  ( k  +  1 ) ) )
2118, 20breq12d 4666 . . . . . . . . . . . . . . . 16  |-  ( i  =  k  ->  (
( Q `  i
)  <  ( Q `  ( i  +  1 ) )  <->  ( Q `  k )  <  ( Q `  ( k  +  1 ) ) ) )
2217, 21imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( i  =  k  ->  (
( ( ph  /\  i  e.  ( 0..^ M ) )  -> 
( Q `  i
)  <  ( Q `  ( i  +  1 ) ) )  <->  ( ( ph  /\  k  e.  ( 0..^ M ) )  ->  ( Q `  k )  <  ( Q `  ( k  +  1 ) ) ) ) )
236simprrd 797 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. i  e.  ( 0..^ M ) ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
2423r19.21bi 2932 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
2522, 24chvarv 2263 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0..^ M ) )  ->  ( Q `  k )  <  ( Q `  ( k  +  1 ) ) )
2625ad4ant14 1293 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  k  e.  ( 0..^ M ) )  ->  ( Q `  k )  <  ( Q `  ( k  +  1 ) ) )
2726adantllr 755 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  < 
j )  /\  k  e.  ( 0..^ M ) )  ->  ( Q `  k )  <  ( Q `  ( k  +  1 ) ) )
28 simpllr 799 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  < 
j )  ->  i  e.  ( 0 ... M
) )
29 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  < 
j )  ->  j  e.  ( 0 ... M
) )
30 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  < 
j )  ->  i  <  j )
3115, 27, 28, 29, 30monoords 39511 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  < 
j )  ->  ( Q `  i )  <  ( Q `  j
) )
3212, 31ltned 10173 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  < 
j )  ->  ( Q `  i )  =/=  ( Q `  j
) )
3332neneqd 2799 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  < 
j )  ->  -.  ( Q `  i )  =  ( Q `  j ) )
3433adantlr 751 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  =  j )  /\  i  <  j )  ->  -.  ( Q `  i
)  =  ( Q `
 j ) )
35 simpll 790 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  =  j )  /\  -.  i  <  j )  ->  ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) ) )
36 elfzelz 12342 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... M )  ->  j  e.  ZZ )
3736zred 11482 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... M )  ->  j  e.  RR )
3837ad3antlr 767 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  =  j )  /\  -.  i  <  j )  ->  j  e.  RR )
39 elfzelz 12342 . . . . . . . . . . . 12  |-  ( i  e.  ( 0 ... M )  ->  i  e.  ZZ )
4039zred 11482 . . . . . . . . . . 11  |-  ( i  e.  ( 0 ... M )  ->  i  e.  RR )
4140ad4antlr 769 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  =  j )  /\  -.  i  <  j )  ->  i  e.  RR )
42 neqne 2802 . . . . . . . . . . . 12  |-  ( -.  i  =  j  -> 
i  =/=  j )
4342necomd 2849 . . . . . . . . . . 11  |-  ( -.  i  =  j  -> 
j  =/=  i )
4443ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  =  j )  /\  -.  i  <  j )  ->  j  =/=  i
)
45 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  =  j )  /\  -.  i  <  j )  ->  -.  i  <  j )
4638, 41, 44, 45lttri5d 39513 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  =  j )  /\  -.  i  <  j )  ->  j  <  i
)
479ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  ( Q `  j )  e.  RR )
4847adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( 0 ... M
) )  /\  j  <  i )  ->  ( Q `  j )  e.  RR )
4948adantllr 755 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  < 
i )  ->  ( Q `  j )  e.  RR )
50 simp-4l 806 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  < 
i )  /\  k  e.  ( 0 ... M
) )  ->  ph )
5150, 13sylancom 701 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  < 
i )  /\  k  e.  ( 0 ... M
) )  ->  ( Q `  k )  e.  RR )
52 simp-4l 806 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  < 
i )  /\  k  e.  ( 0..^ M ) )  ->  ph )
5352, 25sylancom 701 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  < 
i )  /\  k  e.  ( 0..^ M ) )  ->  ( Q `  k )  <  ( Q `  ( k  +  1 ) ) )
54 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  < 
i )  ->  j  e.  ( 0 ... M
) )
55 simpllr 799 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  < 
i )  ->  i  e.  ( 0 ... M
) )
56 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  < 
i )  ->  j  <  i )
5751, 53, 54, 55, 56monoords 39511 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  < 
i )  ->  ( Q `  j )  <  ( Q `  i
) )
5849, 57gtned 10172 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  < 
i )  ->  ( Q `  i )  =/=  ( Q `  j
) )
5958neneqd 2799 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  < 
i )  ->  -.  ( Q `  i )  =  ( Q `  j ) )
6035, 46, 59syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  =  j )  /\  -.  i  <  j )  ->  -.  ( Q `  i )  =  ( Q `  j ) )
6134, 60pm2.61dan 832 . . . . . . 7  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  =  j )  ->  -.  ( Q `  i
)  =  ( Q `
 j ) )
6261adantlr 751 . . . . . 6  |-  ( ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  ( Q `
 i )  =  ( Q `  j
) )  /\  -.  i  =  j )  ->  -.  ( Q `  i )  =  ( Q `  j ) )
6310, 62condan 835 . . . . 5  |-  ( ( ( ( ph  /\  i  e.  ( 0 ... M ) )  /\  j  e.  ( 0 ... M ) )  /\  ( Q `
 i )  =  ( Q `  j
) )  ->  i  =  j )
6463ex 450 . . . 4  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  j  e.  ( 0 ... M
) )  ->  (
( Q `  i
)  =  ( Q `
 j )  -> 
i  =  j ) )
6564ralrimiva 2966 . . 3  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  A. j  e.  ( 0 ... M
) ( ( Q `
 i )  =  ( Q `  j
)  ->  i  =  j ) )
6665ralrimiva 2966 . 2  |-  ( ph  ->  A. i  e.  ( 0 ... M ) A. j  e.  ( 0 ... M ) ( ( Q `  i )  =  ( Q `  j )  ->  i  =  j ) )
67 dff13 6512 . 2  |-  ( Q : ( 0 ... M ) -1-1-> RR  <->  ( Q : ( 0 ... M ) --> RR  /\  A. i  e.  ( 0 ... M ) A. j  e.  ( 0 ... M ) ( ( Q `  i
)  =  ( Q `
 j )  -> 
i  =  j ) ) )
689, 66, 67sylanbrc 698 1  |-  ( ph  ->  Q : ( 0 ... M ) -1-1-> RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074   NNcn 11020   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  fourierdlem50  40373
  Copyright terms: Public domain W3C validator