| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > monoords | Structured version Visualization version Unicode version | ||
| Description: Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| monoords.fk |
|
| monoords.flt |
|
| monoords.i |
|
| monoords.j |
|
| monoords.iltj |
|
| Ref | Expression |
|---|---|
| monoords |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monoords.i |
. . 3
| |
| 2 | 1 | ancli 574 |
. . 3
|
| 3 | eleq1 2689 |
. . . . . 6
| |
| 4 | 3 | anbi2d 740 |
. . . . 5
|
| 5 | fveq2 6191 |
. . . . . 6
| |
| 6 | 5 | eleq1d 2686 |
. . . . 5
|
| 7 | 4, 6 | imbi12d 334 |
. . . 4
|
| 8 | monoords.fk |
. . . 4
| |
| 9 | 7, 8 | vtoclg 3266 |
. . 3
|
| 10 | 1, 2, 9 | sylc 65 |
. 2
|
| 11 | elfzel1 12341 |
. . . . . . 7
| |
| 12 | 1, 11 | syl 17 |
. . . . . 6
|
| 13 | elfzelz 12342 |
. . . . . . 7
| |
| 14 | 1, 13 | syl 17 |
. . . . . 6
|
| 15 | elfzle1 12344 |
. . . . . . 7
| |
| 16 | 1, 15 | syl 17 |
. . . . . 6
|
| 17 | eluz2 11693 |
. . . . . 6
| |
| 18 | 12, 14, 16, 17 | syl3anbrc 1246 |
. . . . 5
|
| 19 | elfzuz2 12346 |
. . . . . . 7
| |
| 20 | 1, 19 | syl 17 |
. . . . . 6
|
| 21 | eluzelz 11697 |
. . . . . 6
| |
| 22 | 20, 21 | syl 17 |
. . . . 5
|
| 23 | 14 | zred 11482 |
. . . . . 6
|
| 24 | monoords.j |
. . . . . . . 8
| |
| 25 | elfzelz 12342 |
. . . . . . . 8
| |
| 26 | 24, 25 | syl 17 |
. . . . . . 7
|
| 27 | 26 | zred 11482 |
. . . . . 6
|
| 28 | 22 | zred 11482 |
. . . . . 6
|
| 29 | monoords.iltj |
. . . . . 6
| |
| 30 | elfzle2 12345 |
. . . . . . 7
| |
| 31 | 24, 30 | syl 17 |
. . . . . 6
|
| 32 | 23, 27, 28, 29, 31 | ltletrd 10197 |
. . . . 5
|
| 33 | elfzo2 12473 |
. . . . 5
| |
| 34 | 18, 22, 32, 33 | syl3anbrc 1246 |
. . . 4
|
| 35 | fzofzp1 12565 |
. . . 4
| |
| 36 | 34, 35 | syl 17 |
. . 3
|
| 37 | 36 | ancli 574 |
. . 3
|
| 38 | eleq1 2689 |
. . . . . 6
| |
| 39 | 38 | anbi2d 740 |
. . . . 5
|
| 40 | fveq2 6191 |
. . . . . 6
| |
| 41 | 40 | eleq1d 2686 |
. . . . 5
|
| 42 | 39, 41 | imbi12d 334 |
. . . 4
|
| 43 | 42, 8 | vtoclg 3266 |
. . 3
|
| 44 | 36, 37, 43 | sylc 65 |
. 2
|
| 45 | 24 | ancli 574 |
. . 3
|
| 46 | eleq1 2689 |
. . . . . 6
| |
| 47 | 46 | anbi2d 740 |
. . . . 5
|
| 48 | fveq2 6191 |
. . . . . 6
| |
| 49 | 48 | eleq1d 2686 |
. . . . 5
|
| 50 | 47, 49 | imbi12d 334 |
. . . 4
|
| 51 | 50, 8 | vtoclg 3266 |
. . 3
|
| 52 | 24, 45, 51 | sylc 65 |
. 2
|
| 53 | 34 | ancli 574 |
. . 3
|
| 54 | eleq1 2689 |
. . . . . 6
| |
| 55 | 54 | anbi2d 740 |
. . . . 5
|
| 56 | oveq1 6657 |
. . . . . . 7
| |
| 57 | 56 | fveq2d 6195 |
. . . . . 6
|
| 58 | 5, 57 | breq12d 4666 |
. . . . 5
|
| 59 | 55, 58 | imbi12d 334 |
. . . 4
|
| 60 | monoords.flt |
. . . 4
| |
| 61 | 59, 60 | vtoclg 3266 |
. . 3
|
| 62 | 34, 53, 61 | sylc 65 |
. 2
|
| 63 | 14 | peano2zd 11485 |
. . . 4
|
| 64 | zltp1le 11427 |
. . . . . 6
| |
| 65 | 14, 26, 64 | syl2anc 693 |
. . . . 5
|
| 66 | 29, 65 | mpbid 222 |
. . . 4
|
| 67 | eluz2 11693 |
. . . 4
| |
| 68 | 63, 26, 66, 67 | syl3anbrc 1246 |
. . 3
|
| 69 | 12 | adantr 481 |
. . . . . . 7
|
| 70 | 22 | adantr 481 |
. . . . . . 7
|
| 71 | elfzelz 12342 |
. . . . . . . 8
| |
| 72 | 71 | adantl 482 |
. . . . . . 7
|
| 73 | 69, 70, 72 | 3jca 1242 |
. . . . . 6
|
| 74 | 69 | zred 11482 |
. . . . . . 7
|
| 75 | 72 | zred 11482 |
. . . . . . 7
|
| 76 | 63 | zred 11482 |
. . . . . . . . 9
|
| 77 | 76 | adantr 481 |
. . . . . . . 8
|
| 78 | 23 | adantr 481 |
. . . . . . . . 9
|
| 79 | 16 | adantr 481 |
. . . . . . . . 9
|
| 80 | 78 | ltp1d 10954 |
. . . . . . . . 9
|
| 81 | 74, 78, 77, 79, 80 | lelttrd 10195 |
. . . . . . . 8
|
| 82 | elfzle1 12344 |
. . . . . . . . 9
| |
| 83 | 82 | adantl 482 |
. . . . . . . 8
|
| 84 | 74, 77, 75, 81, 83 | ltletrd 10197 |
. . . . . . 7
|
| 85 | 74, 75, 84 | ltled 10185 |
. . . . . 6
|
| 86 | 27 | adantr 481 |
. . . . . . 7
|
| 87 | 70 | zred 11482 |
. . . . . . 7
|
| 88 | elfzle2 12345 |
. . . . . . . 8
| |
| 89 | 88 | adantl 482 |
. . . . . . 7
|
| 90 | 31 | adantr 481 |
. . . . . . 7
|
| 91 | 75, 86, 87, 89, 90 | letrd 10194 |
. . . . . 6
|
| 92 | 73, 85, 91 | jca32 558 |
. . . . 5
|
| 93 | elfz2 12333 |
. . . . 5
| |
| 94 | 92, 93 | sylibr 224 |
. . . 4
|
| 95 | 94, 8 | syldan 487 |
. . 3
|
| 96 | 12 | adantr 481 |
. . . . . . . 8
|
| 97 | 22 | adantr 481 |
. . . . . . . 8
|
| 98 | elfzelz 12342 |
. . . . . . . . 9
| |
| 99 | 98 | adantl 482 |
. . . . . . . 8
|
| 100 | 96, 97, 99 | 3jca 1242 |
. . . . . . 7
|
| 101 | 96 | zred 11482 |
. . . . . . . 8
|
| 102 | 99 | zred 11482 |
. . . . . . . 8
|
| 103 | 76 | adantr 481 |
. . . . . . . . 9
|
| 104 | 12 | zred 11482 |
. . . . . . . . . . 11
|
| 105 | 23 | ltp1d 10954 |
. . . . . . . . . . 11
|
| 106 | 104, 23, 76, 16, 105 | lelttrd 10195 |
. . . . . . . . . 10
|
| 107 | 106 | adantr 481 |
. . . . . . . . 9
|
| 108 | elfzle1 12344 |
. . . . . . . . . 10
| |
| 109 | 108 | adantl 482 |
. . . . . . . . 9
|
| 110 | 101, 103, 102, 107, 109 | ltletrd 10197 |
. . . . . . . 8
|
| 111 | 101, 102, 110 | ltled 10185 |
. . . . . . 7
|
| 112 | 97 | zred 11482 |
. . . . . . . 8
|
| 113 | peano2rem 10348 |
. . . . . . . . . . 11
| |
| 114 | 27, 113 | syl 17 |
. . . . . . . . . 10
|
| 115 | 114 | adantr 481 |
. . . . . . . . 9
|
| 116 | elfzle2 12345 |
. . . . . . . . . 10
| |
| 117 | 116 | adantl 482 |
. . . . . . . . 9
|
| 118 | 27 | adantr 481 |
. . . . . . . . . 10
|
| 119 | 118 | ltm1d 10956 |
. . . . . . . . . 10
|
| 120 | 31 | adantr 481 |
. . . . . . . . . 10
|
| 121 | 115, 118, 112, 119, 120 | ltletrd 10197 |
. . . . . . . . 9
|
| 122 | 102, 115, 112, 117, 121 | lelttrd 10195 |
. . . . . . . 8
|
| 123 | 102, 112, 122 | ltled 10185 |
. . . . . . 7
|
| 124 | 100, 111, 123 | jca32 558 |
. . . . . 6
|
| 125 | 124, 93 | sylibr 224 |
. . . . 5
|
| 126 | 125, 8 | syldan 487 |
. . . 4
|
| 127 | peano2zm 11420 |
. . . . . . . . 9
| |
| 128 | 97, 127 | syl 17 |
. . . . . . . 8
|
| 129 | 96, 128, 99 | 3jca 1242 |
. . . . . . 7
|
| 130 | 128 | zred 11482 |
. . . . . . . 8
|
| 131 | 1red 10055 |
. . . . . . . . . 10
| |
| 132 | 27, 28, 131, 31 | lesub1dd 10643 |
. . . . . . . . 9
|
| 133 | 132 | adantr 481 |
. . . . . . . 8
|
| 134 | 102, 115, 130, 117, 133 | letrd 10194 |
. . . . . . 7
|
| 135 | 129, 111, 134 | jca32 558 |
. . . . . 6
|
| 136 | elfz2 12333 |
. . . . . 6
| |
| 137 | 135, 136 | sylibr 224 |
. . . . 5
|
| 138 | simpr 477 |
. . . . . . . 8
| |
| 139 | fzoval 12471 |
. . . . . . . . . . 11
| |
| 140 | 22, 139 | syl 17 |
. . . . . . . . . 10
|
| 141 | 140 | eqcomd 2628 |
. . . . . . . . 9
|
| 142 | 141 | adantr 481 |
. . . . . . . 8
|
| 143 | 138, 142 | eleqtrd 2703 |
. . . . . . 7
|
| 144 | fzofzp1 12565 |
. . . . . . 7
| |
| 145 | 143, 144 | syl 17 |
. . . . . 6
|
| 146 | simpl 473 |
. . . . . . 7
| |
| 147 | 146, 145 | jca 554 |
. . . . . 6
|
| 148 | eleq1 2689 |
. . . . . . . . 9
| |
| 149 | 148 | anbi2d 740 |
. . . . . . . 8
|
| 150 | fveq2 6191 |
. . . . . . . . 9
| |
| 151 | 150 | eleq1d 2686 |
. . . . . . . 8
|
| 152 | 149, 151 | imbi12d 334 |
. . . . . . 7
|
| 153 | eleq1 2689 |
. . . . . . . . . 10
| |
| 154 | 153 | anbi2d 740 |
. . . . . . . . 9
|
| 155 | fveq2 6191 |
. . . . . . . . . 10
| |
| 156 | 155 | eleq1d 2686 |
. . . . . . . . 9
|
| 157 | 154, 156 | imbi12d 334 |
. . . . . . . 8
|
| 158 | 157, 8 | chvarv 2263 |
. . . . . . 7
|
| 159 | 152, 158 | vtoclg 3266 |
. . . . . 6
|
| 160 | 145, 147, 159 | sylc 65 |
. . . . 5
|
| 161 | 137, 160 | syldan 487 |
. . . 4
|
| 162 | 143, 60 | syldan 487 |
. . . . 5
|
| 163 | 137, 162 | syldan 487 |
. . . 4
|
| 164 | 126, 161, 163 | ltled 10185 |
. . 3
|
| 165 | 68, 95, 164 | monoord 12831 |
. 2
|
| 166 | 10, 44, 52, 62, 165 | ltletrd 10197 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 |
| This theorem is referenced by: fourierdlem34 40358 |
| Copyright terms: Public domain | W3C validator |