MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuccofval Structured version   Visualization version   Unicode version

Theorem fuccofval 16619
Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucval.q  |-  Q  =  ( C FuncCat  D )
fucval.b  |-  B  =  ( C  Func  D
)
fucval.n  |-  N  =  ( C Nat  D )
fucval.a  |-  A  =  ( Base `  C
)
fucval.o  |-  .x.  =  (comp `  D )
fucval.c  |-  ( ph  ->  C  e.  Cat )
fucval.d  |-  ( ph  ->  D  e.  Cat )
fuccofval.x  |-  .xb  =  (comp `  Q )
Assertion
Ref Expression
fuccofval  |-  ( ph  -> 
.xb  =  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) ) )
Distinct variable groups:    v, h, B    a, b, f, g, h, v, x, ph    C, a, b, f, g, h, v, x    D, a, b, f, g, h, v, x
Allowed substitution hints:    A( x, v, f, g, h, a, b)    B( x, f, g, a, b)    Q( x, v, f, g, h, a, b)    .xb ( x, v, f, g, h, a, b)    .x. ( x, v, f, g, h, a, b)    N( x, v, f, g, h, a, b)

Proof of Theorem fuccofval
StepHypRef Expression
1 fucval.q . . . 4  |-  Q  =  ( C FuncCat  D )
2 fucval.b . . . 4  |-  B  =  ( C  Func  D
)
3 fucval.n . . . 4  |-  N  =  ( C Nat  D )
4 fucval.a . . . 4  |-  A  =  ( Base `  C
)
5 fucval.o . . . 4  |-  .x.  =  (comp `  D )
6 fucval.c . . . 4  |-  ( ph  ->  C  e.  Cat )
7 fucval.d . . . 4  |-  ( ph  ->  D  e.  Cat )
8 eqidd 2623 . . . 4  |-  ( ph  ->  ( v  e.  ( B  X.  B ) ,  h  e.  B  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )  =  ( v  e.  ( B  X.  B
) ,  h  e.  B  |->  [_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) ) )
91, 2, 3, 4, 5, 6, 7, 8fucval 16618 . . 3  |-  ( ph  ->  Q  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  N >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. } )
109fveq2d 6195 . 2  |-  ( ph  ->  (comp `  Q )  =  (comp `  { <. ( Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  N >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. } ) )
11 fuccofval.x . 2  |-  .xb  =  (comp `  Q )
12 ovex 6678 . . . . . 6  |-  ( C 
Func  D )  e.  _V
132, 12eqeltri 2697 . . . . 5  |-  B  e. 
_V
1413, 13xpex 6962 . . . 4  |-  ( B  X.  B )  e. 
_V
1514, 13mpt2ex 7247 . . 3  |-  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )  e.  _V
16 catstr 16617 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  N >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. } Struct  <. 1 , ; 1 5 >.
17 ccoid 16077 . . . 4  |- comp  = Slot  (comp ` 
ndx )
18 snsstp3 4349 . . . 4  |-  { <. (comp `  ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. }  C_  { <. ( Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  N >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. }
1916, 17, 18strfv 15907 . . 3  |-  ( ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )  e.  _V  ->  (
v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )  =  (comp `  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  N >. , 
<. (comp `  ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. } ) )
2015, 19ax-mp 5 . 2  |-  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )  =  (comp `  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  N >. , 
<. (comp `  ndx ) ,  ( v  e.  ( B  X.  B ) ,  h  e.  B  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) )
>. } )
2110, 11, 203eqtr4g 2681 1  |-  ( ph  -> 
.xb  =  ( v  e.  ( B  X.  B ) ,  h  e.  B  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   {ctp 4181   <.cop 4183    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   1c1 9937   5c5 11073  ;cdc 11493   ndxcnx 15854   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325    Func cfunc 16514   Nat cnat 16601   FuncCat cfuc 16602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-fuc 16604
This theorem is referenced by:  fucbas  16620  fuchom  16621  fucco  16622
  Copyright terms: Public domain W3C validator