MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucco Structured version   Visualization version   Unicode version

Theorem fucco 16622
Description: Value of the composition of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucco.q  |-  Q  =  ( C FuncCat  D )
fucco.n  |-  N  =  ( C Nat  D )
fucco.a  |-  A  =  ( Base `  C
)
fucco.o  |-  .x.  =  (comp `  D )
fucco.x  |-  .xb  =  (comp `  Q )
fucco.f  |-  ( ph  ->  R  e.  ( F N G ) )
fucco.g  |-  ( ph  ->  S  e.  ( G N H ) )
Assertion
Ref Expression
fucco  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  =  ( x  e.  A  |->  ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( R `  x ) ) ) )
Distinct variable groups:    x, A    ph, x    x, R    x, S    x, C    x, D    x, 
.x.    x, F    x, G    x, H
Allowed substitution hints:    Q( x)    .xb ( x)    N( x)

Proof of Theorem fucco
Dummy variables  a 
b  f  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucco.q . . . 4  |-  Q  =  ( C FuncCat  D )
2 eqid 2622 . . . 4  |-  ( C 
Func  D )  =  ( C  Func  D )
3 fucco.n . . . 4  |-  N  =  ( C Nat  D )
4 fucco.a . . . 4  |-  A  =  ( Base `  C
)
5 fucco.o . . . 4  |-  .x.  =  (comp `  D )
6 fucco.f . . . . . . . 8  |-  ( ph  ->  R  e.  ( F N G ) )
73natrcl 16610 . . . . . . . 8  |-  ( R  e.  ( F N G )  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D
) ) )
86, 7syl 17 . . . . . . 7  |-  ( ph  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D ) ) )
98simpld 475 . . . . . 6  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
10 funcrcl 16523 . . . . . 6  |-  ( F  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
119, 10syl 17 . . . . 5  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
1211simpld 475 . . . 4  |-  ( ph  ->  C  e.  Cat )
1311simprd 479 . . . 4  |-  ( ph  ->  D  e.  Cat )
14 fucco.x . . . 4  |-  .xb  =  (comp `  Q )
151, 2, 3, 4, 5, 12, 13, 14fuccofval 16619 . . 3  |-  ( ph  -> 
.xb  =  ( v  e.  ( ( C 
Func  D )  X.  ( C  Func  D ) ) ,  h  e.  ( C  Func  D )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) ) ) )
16 fvexd 6203 . . . 4  |-  ( (
ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  ->  ( 1st `  v )  e. 
_V )
17 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  ->  v  =  <. F ,  G >. )
1817fveq2d 6195 . . . . 5  |-  ( (
ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  ->  ( 1st `  v )  =  ( 1st `  <. F ,  G >. )
)
19 op1stg 7180 . . . . . . 7  |-  ( ( F  e.  ( C 
Func  D )  /\  G  e.  ( C  Func  D
) )  ->  ( 1st `  <. F ,  G >. )  =  F )
208, 19syl 17 . . . . . 6  |-  ( ph  ->  ( 1st `  <. F ,  G >. )  =  F )
2120adantr 481 . . . . 5  |-  ( (
ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  ->  ( 1st `  <. F ,  G >. )  =  F )
2218, 21eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  ->  ( 1st `  v )  =  F )
23 fvexd 6203 . . . . 5  |-  ( ( ( ph  /\  (
v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  ->  ( 2nd `  v
)  e.  _V )
2417adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  (
v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  ->  v  =  <. F ,  G >. )
2524fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  (
v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  ->  ( 2nd `  v
)  =  ( 2nd `  <. F ,  G >. ) )
26 op2ndg 7181 . . . . . . . 8  |-  ( ( F  e.  ( C 
Func  D )  /\  G  e.  ( C  Func  D
) )  ->  ( 2nd `  <. F ,  G >. )  =  G )
278, 26syl 17 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. F ,  G >. )  =  G )
2827ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  ->  ( 2nd `  <. F ,  G >. )  =  G )
2925, 28eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  (
v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  ->  ( 2nd `  v
)  =  G )
30 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  g  =  G )
31 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  ->  h  =  H )
3231ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  h  =  H )
3330, 32oveq12d 6668 . . . . . 6  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( g N h )  =  ( G N H ) )
34 simplr 792 . . . . . . 7  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  f  =  F )
3534, 30oveq12d 6668 . . . . . 6  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( f N g )  =  ( F N G ) )
3634fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( 1st `  f )  =  ( 1st `  F ) )
3736fveq1d 6193 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( ( 1st `  f ) `  x )  =  ( ( 1st `  F
) `  x )
)
3830fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( 1st `  g )  =  ( 1st `  G ) )
3938fveq1d 6193 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( ( 1st `  g ) `  x )  =  ( ( 1st `  G
) `  x )
)
4037, 39opeq12d 4410 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  <. ( ( 1st `  f ) `
 x ) ,  ( ( 1st `  g
) `  x ) >.  =  <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
)
4132fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( 1st `  h )  =  ( 1st `  H ) )
4241fveq1d 6193 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( ( 1st `  h ) `  x )  =  ( ( 1st `  H
) `  x )
)
4340, 42oveq12d 6668 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( <. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) )  =  ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.  .x.  ( ( 1st `  H
) `  x )
) )
4443oveqd 6667 . . . . . . 7  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( (
b `  x )
( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.  .x.  ( ( 1st `  h
) `  x )
) ( a `  x ) )  =  ( ( b `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( a `  x ) ) )
4544mpteq2dv 4745 . . . . . 6  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( x  e.  A  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.  .x.  ( ( 1st `  h
) `  x )
) ( a `  x ) ) )  =  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( a `  x ) ) ) )
4633, 35, 45mpt2eq123dv 6717 . . . . 5  |-  ( ( ( ( ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  /\  g  =  G
)  ->  ( b  e.  ( g N h ) ,  a  e.  ( f N g )  |->  ( x  e.  A  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) )  =  ( b  e.  ( G N H ) ,  a  e.  ( F N G ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( a `  x ) ) ) ) )
4723, 29, 46csbied2 3561 . . . 4  |-  ( ( ( ph  /\  (
v  =  <. F ,  G >.  /\  h  =  H ) )  /\  f  =  F )  ->  [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) )  =  ( b  e.  ( G N H ) ,  a  e.  ( F N G ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( a `  x ) ) ) ) )
4816, 22, 47csbied2 3561 . . 3  |-  ( (
ph  /\  ( v  =  <. F ,  G >.  /\  h  =  H ) )  ->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g N h ) ,  a  e.  ( f N g ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  .x.  ( ( 1st `  h ) `  x ) ) ( a `  x ) ) ) )  =  ( b  e.  ( G N H ) ,  a  e.  ( F N G ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( a `  x ) ) ) ) )
49 opelxpi 5148 . . . 4  |-  ( ( F  e.  ( C 
Func  D )  /\  G  e.  ( C  Func  D
) )  ->  <. F ,  G >.  e.  ( ( C  Func  D )  X.  ( C  Func  D
) ) )
508, 49syl 17 . . 3  |-  ( ph  -> 
<. F ,  G >.  e.  ( ( C  Func  D )  X.  ( C 
Func  D ) ) )
51 fucco.g . . . . 5  |-  ( ph  ->  S  e.  ( G N H ) )
523natrcl 16610 . . . . 5  |-  ( S  e.  ( G N H )  ->  ( G  e.  ( C  Func  D )  /\  H  e.  ( C  Func  D
) ) )
5351, 52syl 17 . . . 4  |-  ( ph  ->  ( G  e.  ( C  Func  D )  /\  H  e.  ( C  Func  D ) ) )
5453simprd 479 . . 3  |-  ( ph  ->  H  e.  ( C 
Func  D ) )
55 ovex 6678 . . . . 5  |-  ( G N H )  e. 
_V
56 ovex 6678 . . . . 5  |-  ( F N G )  e. 
_V
5755, 56mpt2ex 7247 . . . 4  |-  ( b  e.  ( G N H ) ,  a  e.  ( F N G )  |->  ( x  e.  A  |->  ( ( b `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.  .x.  ( ( 1st `  H
) `  x )
) ( a `  x ) ) ) )  e.  _V
5857a1i 11 . . 3  |-  ( ph  ->  ( b  e.  ( G N H ) ,  a  e.  ( F N G ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( a `  x ) ) ) )  e. 
_V )
5915, 48, 50, 54, 58ovmpt2d 6788 . 2  |-  ( ph  ->  ( <. F ,  G >. 
.xb  H )  =  ( b  e.  ( G N H ) ,  a  e.  ( F N G ) 
|->  ( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( a `  x ) ) ) ) )
60 simprl 794 . . . . 5  |-  ( (
ph  /\  ( b  =  S  /\  a  =  R ) )  -> 
b  =  S )
6160fveq1d 6193 . . . 4  |-  ( (
ph  /\  ( b  =  S  /\  a  =  R ) )  -> 
( b `  x
)  =  ( S `
 x ) )
62 simprr 796 . . . . 5  |-  ( (
ph  /\  ( b  =  S  /\  a  =  R ) )  -> 
a  =  R )
6362fveq1d 6193 . . . 4  |-  ( (
ph  /\  ( b  =  S  /\  a  =  R ) )  -> 
( a `  x
)  =  ( R `
 x ) )
6461, 63oveq12d 6668 . . 3  |-  ( (
ph  /\  ( b  =  S  /\  a  =  R ) )  -> 
( ( b `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( a `  x ) )  =  ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.  .x.  ( ( 1st `  H
) `  x )
) ( R `  x ) ) )
6564mpteq2dv 4745 . 2  |-  ( (
ph  /\  ( b  =  S  /\  a  =  R ) )  -> 
( x  e.  A  |->  ( ( b `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( a `  x ) ) )  =  ( x  e.  A  |->  ( ( S `  x
) ( <. (
( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( R `  x ) ) ) )
66 fvex 6201 . . . . 5  |-  ( Base `  C )  e.  _V
674, 66eqeltri 2697 . . . 4  |-  A  e. 
_V
6867mptex 6486 . . 3  |-  ( x  e.  A  |->  ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.  .x.  ( ( 1st `  H
) `  x )
) ( R `  x ) ) )  e.  _V
6968a1i 11 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( ( S `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( R `  x ) ) )  e.  _V )
7059, 65, 51, 6, 69ovmpt2d 6788 1  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  =  ( x  e.  A  |->  ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  H ) `  x ) ) ( R `  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   <.cop 4183    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857  compcco 15953   Catccat 16325    Func cfunc 16514   Nat cnat 16601   FuncCat cfuc 16602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-func 16518  df-nat 16603  df-fuc 16604
This theorem is referenced by:  fuccoval  16623  fuccocl  16624  fuclid  16626  fucrid  16627  fucass  16628  fucsect  16632  curfcl  16872
  Copyright terms: Public domain W3C validator