MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgreqlem1 Structured version   Visualization version   Unicode version

Theorem gsmsymgreqlem1 17850
Description: Lemma 1 for gsmsymgreq 17852. (Contributed by AV, 26-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s  |-  S  =  ( SymGrp `  N )
gsmsymgrfix.b  |-  B  =  ( Base `  S
)
gsmsymgreq.z  |-  Z  =  ( SymGrp `  M )
gsmsymgreq.p  |-  P  =  ( Base `  Z
)
gsmsymgreq.i  |-  I  =  ( N  i^i  M
)
Assertion
Ref Expression
gsmsymgreqlem1  |-  ( ( ( N  e.  Fin  /\  M  e.  Fin  /\  J  e.  I )  /\  ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  -> 
( ( A. n  e.  I  ( ( S  gsumg  X ) `  n
)  =  ( ( Z  gsumg  Y ) `  n
)  /\  ( C `  J )  =  ( R `  J ) )  ->  ( ( S  gsumg  ( X ++  <" C "> ) ) `  J )  =  ( ( Z  gsumg  ( Y ++  <" R "> ) ) `  J ) ) )
Distinct variable groups:    n, I    n, X    C, n    n, J    R, n    S, n    n, Y    n, Z
Allowed substitution hints:    B( n)    P( n)    M( n)    N( n)

Proof of Theorem gsmsymgreqlem1
StepHypRef Expression
1 simpr 477 . . . . . . . 8  |-  ( ( X  e. Word  B  /\  C  e.  B )  ->  C  e.  B )
2 simpr 477 . . . . . . . 8  |-  ( ( Y  e. Word  P  /\  R  e.  P )  ->  R  e.  P )
31, 2anim12i 590 . . . . . . 7  |-  ( ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P ) )  -> 
( C  e.  B  /\  R  e.  P
) )
433adant3 1081 . . . . . 6  |-  ( ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) )  ->  ( C  e.  B  /\  R  e.  P )
)
54adantl 482 . . . . 5  |-  ( ( ( N  e.  Fin  /\  M  e.  Fin  /\  J  e.  I )  /\  ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  -> 
( C  e.  B  /\  R  e.  P
) )
65adantr 481 . . . 4  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  ( C  e.  B  /\  R  e.  P ) )
7 simpll3 1102 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  J  e.  I
)
8 simpr 477 . . . . . 6  |-  ( ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) )  -> 
( C `  J
)  =  ( R `
 J ) )
98adantl 482 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  ( C `  J )  =  ( R `  J ) )
10 simprl 794 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n ) )
117, 9, 103jca 1242 . . . 4  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  ( J  e.  I  /\  ( C `
 J )  =  ( R `  J
)  /\  A. n  e.  I  ( ( S  gsumg  X ) `  n
)  =  ( ( Z  gsumg  Y ) `  n
) ) )
12 gsmsymgrfix.s . . . . 5  |-  S  =  ( SymGrp `  N )
13 gsmsymgrfix.b . . . . 5  |-  B  =  ( Base `  S
)
14 gsmsymgreq.z . . . . 5  |-  Z  =  ( SymGrp `  M )
15 gsmsymgreq.p . . . . 5  |-  P  =  ( Base `  Z
)
16 gsmsymgreq.i . . . . 5  |-  I  =  ( N  i^i  M
)
1712, 13, 14, 15, 16fvcosymgeq 17849 . . . 4  |-  ( ( C  e.  B  /\  R  e.  P )  ->  ( ( J  e.  I  /\  ( C `
 J )  =  ( R `  J
)  /\  A. n  e.  I  ( ( S  gsumg  X ) `  n
)  =  ( ( Z  gsumg  Y ) `  n
) )  ->  (
( ( S  gsumg  X )  o.  C ) `  J )  =  ( ( ( Z  gsumg  Y )  o.  R ) `  J ) ) )
186, 11, 17sylc 65 . . 3  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  ( ( ( S  gsumg  X )  o.  C
) `  J )  =  ( ( ( Z  gsumg  Y )  o.  R
) `  J )
)
19 simpl1 1064 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  M  e.  Fin  /\  J  e.  I )  /\  ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  ->  N  e.  Fin )
20 simpr1l 1118 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  M  e.  Fin  /\  J  e.  I )  /\  ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  ->  X  e. Word  B )
21 simpr1r 1119 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  M  e.  Fin  /\  J  e.  I )  /\  ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  ->  C  e.  B )
2219, 20, 213jca 1242 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  M  e.  Fin  /\  J  e.  I )  /\  ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  -> 
( N  e.  Fin  /\  X  e. Word  B  /\  C  e.  B )
)
2322adantr 481 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  ( N  e. 
Fin  /\  X  e. Word  B  /\  C  e.  B
) )
2412, 13gsumccatsymgsn 17846 . . . . 5  |-  ( ( N  e.  Fin  /\  X  e. Word  B  /\  C  e.  B )  ->  ( S  gsumg  ( X ++  <" C "> ) )  =  ( ( S  gsumg  X )  o.  C ) )
2523, 24syl 17 . . . 4  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  ( S  gsumg  ( X ++ 
<" C "> ) )  =  ( ( S  gsumg  X )  o.  C
) )
2625fveq1d 6193 . . 3  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  ( ( S 
gsumg  ( X ++  <" C "> ) ) `  J )  =  ( ( ( S  gsumg  X )  o.  C ) `  J ) )
27 simpl2 1065 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  M  e.  Fin  /\  J  e.  I )  /\  ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  ->  M  e.  Fin )
28 simpr2l 1120 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  M  e.  Fin  /\  J  e.  I )  /\  ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  ->  Y  e. Word  P )
29 simpr2r 1121 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  M  e.  Fin  /\  J  e.  I )  /\  ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  ->  R  e.  P )
3027, 28, 293jca 1242 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  M  e.  Fin  /\  J  e.  I )  /\  ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  -> 
( M  e.  Fin  /\  Y  e. Word  P  /\  R  e.  P )
)
3130adantr 481 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  ( M  e. 
Fin  /\  Y  e. Word  P  /\  R  e.  P
) )
3214, 15gsumccatsymgsn 17846 . . . . 5  |-  ( ( M  e.  Fin  /\  Y  e. Word  P  /\  R  e.  P )  ->  ( Z  gsumg  ( Y ++  <" R "> ) )  =  ( ( Z  gsumg  Y )  o.  R ) )
3331, 32syl 17 . . . 4  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  ( Z  gsumg  ( Y ++ 
<" R "> ) )  =  ( ( Z  gsumg  Y )  o.  R
) )
3433fveq1d 6193 . . 3  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  ( ( Z 
gsumg  ( Y ++  <" R "> ) ) `  J )  =  ( ( ( Z  gsumg  Y )  o.  R ) `  J ) )
3518, 26, 343eqtr4d 2666 . 2  |-  ( ( ( ( N  e. 
Fin  /\  M  e.  Fin  /\  J  e.  I
)  /\  ( ( X  e. Word  B  /\  C  e.  B )  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  /\  ( A. n  e.  I 
( ( S  gsumg  X ) `
 n )  =  ( ( Z  gsumg  Y ) `
 n )  /\  ( C `  J )  =  ( R `  J ) ) )  ->  ( ( S 
gsumg  ( X ++  <" C "> ) ) `  J )  =  ( ( Z  gsumg  ( Y ++  <" R "> ) ) `  J ) )
3635ex 450 1  |-  ( ( ( N  e.  Fin  /\  M  e.  Fin  /\  J  e.  I )  /\  ( ( X  e. Word  B  /\  C  e.  B
)  /\  ( Y  e. Word  P  /\  R  e.  P )  /\  ( # `
 X )  =  ( # `  Y
) ) )  -> 
( ( A. n  e.  I  ( ( S  gsumg  X ) `  n
)  =  ( ( Z  gsumg  Y ) `  n
)  /\  ( C `  J )  =  ( R `  J ) )  ->  ( ( S  gsumg  ( X ++  <" C "> ) ) `  J )  =  ( ( Z  gsumg  ( Y ++  <" R "> ) ) `  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    o. ccom 5118   ` cfv 5888  (class class class)co 6650   Fincfn 7955   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294   Basecbs 15857    gsumg cgsu 16101   SymGrpcsymg 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-symg 17798
This theorem is referenced by:  gsmsymgreqlem2  17851
  Copyright terms: Public domain W3C validator