MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgrfix Structured version   Visualization version   Unicode version

Theorem gsmsymgrfix 17848
Description: The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s  |-  S  =  ( SymGrp `  N )
gsmsymgrfix.b  |-  B  =  ( Base `  S
)
Assertion
Ref Expression
gsmsymgrfix  |-  ( ( N  e.  Fin  /\  K  e.  N  /\  W  e. Word  B )  ->  ( A. i  e.  ( 0..^ ( # `  W ) ) ( ( W `  i
) `  K )  =  K  ->  ( ( S  gsumg  W ) `  K
)  =  K ) )
Distinct variable groups:    B, i    i, K    i, N    i, W
Allowed substitution hint:    S( i)

Proof of Theorem gsmsymgrfix
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . . . . . 11  |-  w  e. 
_V
2 hasheq0 13154 . . . . . . . . . . 11  |-  ( w  e.  _V  ->  (
( # `  w )  =  0  <->  w  =  (/) ) )
31, 2ax-mp 5 . . . . . . . . . 10  |-  ( (
# `  w )  =  0  <->  w  =  (/) )
43biimpri 218 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( # `  w )  =  0 )
54oveq2d 6666 . . . . . . . 8  |-  ( w  =  (/)  ->  ( 0..^ ( # `  w
) )  =  ( 0..^ 0 ) )
6 fzo0 12492 . . . . . . . 8  |-  ( 0..^ 0 )  =  (/)
75, 6syl6eq 2672 . . . . . . 7  |-  ( w  =  (/)  ->  ( 0..^ ( # `  w
) )  =  (/) )
8 fveq1 6190 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( w `
 i )  =  ( (/) `  i ) )
98fveq1d 6193 . . . . . . . 8  |-  ( w  =  (/)  ->  ( ( w `  i ) `
 K )  =  ( ( (/) `  i
) `  K )
)
109eqeq1d 2624 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( ( w `  i
) `  K )  =  K  <->  ( ( (/) `  i ) `  K
)  =  K ) )
117, 10raleqbidv 3152 . . . . . 6  |-  ( w  =  (/)  ->  ( A. i  e.  ( 0..^ ( # `  w
) ) ( ( w `  i ) `
 K )  =  K  <->  A. i  e.  (/)  ( ( (/) `  i
) `  K )  =  K ) )
12 oveq2 6658 . . . . . . . 8  |-  ( w  =  (/)  ->  ( S 
gsumg  w )  =  ( S  gsumg  (/) ) )
1312fveq1d 6193 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( S  gsumg  w ) `  K
)  =  ( ( S  gsumg  (/) ) `  K ) )
1413eqeq1d 2624 . . . . . 6  |-  ( w  =  (/)  ->  ( ( ( S  gsumg  w ) `  K
)  =  K  <->  ( ( S  gsumg  (/) ) `  K )  =  K ) )
1511, 14imbi12d 334 . . . . 5  |-  ( w  =  (/)  ->  ( ( A. i  e.  ( 0..^ ( # `  w
) ) ( ( w `  i ) `
 K )  =  K  ->  ( ( S  gsumg  w ) `  K
)  =  K )  <-> 
( A. i  e.  (/)  ( ( (/) `  i
) `  K )  =  K  ->  ( ( S  gsumg  (/) ) `  K )  =  K ) ) )
1615imbi2d 330 . . . 4  |-  ( w  =  (/)  ->  ( ( ( N  e.  Fin  /\  K  e.  N )  ->  ( A. i  e.  ( 0..^ ( # `  w ) ) ( ( w `  i
) `  K )  =  K  ->  ( ( S  gsumg  w ) `  K
)  =  K ) )  <->  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( A. i  e.  (/)  ( (
(/) `  i ) `  K )  =  K  ->  ( ( S 
gsumg  (/) ) `  K )  =  K ) ) ) )
17 fveq2 6191 . . . . . . . 8  |-  ( w  =  y  ->  ( # `
 w )  =  ( # `  y
) )
1817oveq2d 6666 . . . . . . 7  |-  ( w  =  y  ->  (
0..^ ( # `  w
) )  =  ( 0..^ ( # `  y
) ) )
19 fveq1 6190 . . . . . . . . 9  |-  ( w  =  y  ->  (
w `  i )  =  ( y `  i ) )
2019fveq1d 6193 . . . . . . . 8  |-  ( w  =  y  ->  (
( w `  i
) `  K )  =  ( ( y `
 i ) `  K ) )
2120eqeq1d 2624 . . . . . . 7  |-  ( w  =  y  ->  (
( ( w `  i ) `  K
)  =  K  <->  ( (
y `  i ) `  K )  =  K ) )
2218, 21raleqbidv 3152 . . . . . 6  |-  ( w  =  y  ->  ( A. i  e.  (
0..^ ( # `  w
) ) ( ( w `  i ) `
 K )  =  K  <->  A. i  e.  ( 0..^ ( # `  y
) ) ( ( y `  i ) `
 K )  =  K ) )
23 oveq2 6658 . . . . . . . 8  |-  ( w  =  y  ->  ( S  gsumg  w )  =  ( S  gsumg  y ) )
2423fveq1d 6193 . . . . . . 7  |-  ( w  =  y  ->  (
( S  gsumg  w ) `  K
)  =  ( ( S  gsumg  y ) `  K
) )
2524eqeq1d 2624 . . . . . 6  |-  ( w  =  y  ->  (
( ( S  gsumg  w ) `
 K )  =  K  <->  ( ( S 
gsumg  y ) `  K
)  =  K ) )
2622, 25imbi12d 334 . . . . 5  |-  ( w  =  y  ->  (
( A. i  e.  ( 0..^ ( # `  w ) ) ( ( w `  i
) `  K )  =  K  ->  ( ( S  gsumg  w ) `  K
)  =  K )  <-> 
( A. i  e.  ( 0..^ ( # `  y ) ) ( ( y `  i
) `  K )  =  K  ->  ( ( S  gsumg  y ) `  K
)  =  K ) ) )
2726imbi2d 330 . . . 4  |-  ( w  =  y  ->  (
( ( N  e. 
Fin  /\  K  e.  N )  ->  ( A. i  e.  (
0..^ ( # `  w
) ) ( ( w `  i ) `
 K )  =  K  ->  ( ( S  gsumg  w ) `  K
)  =  K ) )  <->  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( A. i  e.  (
0..^ ( # `  y
) ) ( ( y `  i ) `
 K )  =  K  ->  ( ( S  gsumg  y ) `  K
)  =  K ) ) ) )
28 fveq2 6191 . . . . . . . 8  |-  ( w  =  ( y ++  <" z "> )  ->  ( # `  w
)  =  ( # `  ( y ++  <" z "> ) ) )
2928oveq2d 6666 . . . . . . 7  |-  ( w  =  ( y ++  <" z "> )  ->  ( 0..^ ( # `  w ) )  =  ( 0..^ ( # `  ( y ++  <" z "> ) ) ) )
30 fveq1 6190 . . . . . . . . 9  |-  ( w  =  ( y ++  <" z "> )  ->  ( w `  i
)  =  ( ( y ++  <" z "> ) `  i
) )
3130fveq1d 6193 . . . . . . . 8  |-  ( w  =  ( y ++  <" z "> )  ->  ( ( w `  i ) `  K
)  =  ( ( ( y ++  <" z "> ) `  i
) `  K )
)
3231eqeq1d 2624 . . . . . . 7  |-  ( w  =  ( y ++  <" z "> )  ->  ( ( ( w `
 i ) `  K )  =  K  <-> 
( ( ( y ++ 
<" z "> ) `  i ) `  K )  =  K ) )
3329, 32raleqbidv 3152 . . . . . 6  |-  ( w  =  ( y ++  <" z "> )  ->  ( A. i  e.  ( 0..^ ( # `  w ) ) ( ( w `  i
) `  K )  =  K  <->  A. i  e.  ( 0..^ ( # `  (
y ++  <" z "> ) ) ) ( ( ( y ++ 
<" z "> ) `  i ) `  K )  =  K ) )
34 oveq2 6658 . . . . . . . 8  |-  ( w  =  ( y ++  <" z "> )  ->  ( S  gsumg  w )  =  ( S  gsumg  ( y ++  <" z "> ) ) )
3534fveq1d 6193 . . . . . . 7  |-  ( w  =  ( y ++  <" z "> )  ->  ( ( S  gsumg  w ) `
 K )  =  ( ( S  gsumg  ( y ++ 
<" z "> ) ) `  K
) )
3635eqeq1d 2624 . . . . . 6  |-  ( w  =  ( y ++  <" z "> )  ->  ( ( ( S 
gsumg  w ) `  K
)  =  K  <->  ( ( S  gsumg  ( y ++  <" z "> ) ) `  K )  =  K ) )
3733, 36imbi12d 334 . . . . 5  |-  ( w  =  ( y ++  <" z "> )  ->  ( ( A. i  e.  ( 0..^ ( # `  w ) ) ( ( w `  i
) `  K )  =  K  ->  ( ( S  gsumg  w ) `  K
)  =  K )  <-> 
( A. i  e.  ( 0..^ ( # `  ( y ++  <" z "> ) ) ) ( ( ( y ++ 
<" z "> ) `  i ) `  K )  =  K  ->  ( ( S 
gsumg  ( y ++  <" z "> ) ) `  K )  =  K ) ) )
3837imbi2d 330 . . . 4  |-  ( w  =  ( y ++  <" z "> )  ->  ( ( ( N  e.  Fin  /\  K  e.  N )  ->  ( A. i  e.  (
0..^ ( # `  w
) ) ( ( w `  i ) `
 K )  =  K  ->  ( ( S  gsumg  w ) `  K
)  =  K ) )  <->  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( A. i  e.  (
0..^ ( # `  (
y ++  <" z "> ) ) ) ( ( ( y ++ 
<" z "> ) `  i ) `  K )  =  K  ->  ( ( S 
gsumg  ( y ++  <" z "> ) ) `  K )  =  K ) ) ) )
39 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  ( # `
 w )  =  ( # `  W
) )
4039oveq2d 6666 . . . . . . 7  |-  ( w  =  W  ->  (
0..^ ( # `  w
) )  =  ( 0..^ ( # `  W
) ) )
41 fveq1 6190 . . . . . . . . 9  |-  ( w  =  W  ->  (
w `  i )  =  ( W `  i ) )
4241fveq1d 6193 . . . . . . . 8  |-  ( w  =  W  ->  (
( w `  i
) `  K )  =  ( ( W `
 i ) `  K ) )
4342eqeq1d 2624 . . . . . . 7  |-  ( w  =  W  ->  (
( ( w `  i ) `  K
)  =  K  <->  ( ( W `  i ) `  K )  =  K ) )
4440, 43raleqbidv 3152 . . . . . 6  |-  ( w  =  W  ->  ( A. i  e.  (
0..^ ( # `  w
) ) ( ( w `  i ) `
 K )  =  K  <->  A. i  e.  ( 0..^ ( # `  W
) ) ( ( W `  i ) `
 K )  =  K ) )
45 oveq2 6658 . . . . . . . 8  |-  ( w  =  W  ->  ( S  gsumg  w )  =  ( S  gsumg  W ) )
4645fveq1d 6193 . . . . . . 7  |-  ( w  =  W  ->  (
( S  gsumg  w ) `  K
)  =  ( ( S  gsumg  W ) `  K
) )
4746eqeq1d 2624 . . . . . 6  |-  ( w  =  W  ->  (
( ( S  gsumg  w ) `
 K )  =  K  <->  ( ( S 
gsumg  W ) `  K
)  =  K ) )
4844, 47imbi12d 334 . . . . 5  |-  ( w  =  W  ->  (
( A. i  e.  ( 0..^ ( # `  w ) ) ( ( w `  i
) `  K )  =  K  ->  ( ( S  gsumg  w ) `  K
)  =  K )  <-> 
( A. i  e.  ( 0..^ ( # `  W ) ) ( ( W `  i
) `  K )  =  K  ->  ( ( S  gsumg  W ) `  K
)  =  K ) ) )
4948imbi2d 330 . . . 4  |-  ( w  =  W  ->  (
( ( N  e. 
Fin  /\  K  e.  N )  ->  ( A. i  e.  (
0..^ ( # `  w
) ) ( ( w `  i ) `
 K )  =  K  ->  ( ( S  gsumg  w ) `  K
)  =  K ) )  <->  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( A. i  e.  (
0..^ ( # `  W
) ) ( ( W `  i ) `
 K )  =  K  ->  ( ( S  gsumg  W ) `  K
)  =  K ) ) ) )
50 gsmsymgrfix.s . . . . . . . . . 10  |-  S  =  ( SymGrp `  N )
5150symgid 17821 . . . . . . . . 9  |-  ( N  e.  Fin  ->  (  _I  |`  N )  =  ( 0g `  S
) )
5251adantr 481 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  (  _I  |`  N )  =  ( 0g `  S ) )
53 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  S )  =  ( 0g `  S
)
5453gsum0 17278 . . . . . . . 8  |-  ( S 
gsumg  (/) )  =  ( 0g
`  S )
5552, 54syl6reqr 2675 . . . . . . 7  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( S  gsumg  (/) )  =  (  _I  |`  N ) )
5655fveq1d 6193 . . . . . 6  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( ( S  gsumg  (/) ) `  K )  =  ( (  _I  |`  N ) `
 K ) )
57 fvresi 6439 . . . . . . 7  |-  ( K  e.  N  ->  (
(  _I  |`  N ) `
 K )  =  K )
5857adantl 482 . . . . . 6  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( (  _I  |`  N ) `
 K )  =  K )
5956, 58eqtrd 2656 . . . . 5  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( ( S  gsumg  (/) ) `  K )  =  K )
6059a1d 25 . . . 4  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( A. i  e.  (/)  ( ( (/) `  i
) `  K )  =  K  ->  ( ( S  gsumg  (/) ) `  K )  =  K ) )
61 ccatws1len 13398 . . . . . . . . . 10  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( # `  (
y ++  <" z "> ) )  =  ( ( # `  y
)  +  1 ) )
6261oveq2d 6666 . . . . . . . . 9  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( 0..^ ( # `  ( y ++  <" z "> ) ) )  =  ( 0..^ ( ( # `  y
)  +  1 ) ) )
6362raleqdv 3144 . . . . . . . 8  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( A. i  e.  ( 0..^ ( # `  ( y ++  <" z "> ) ) ) ( ( ( y ++ 
<" z "> ) `  i ) `  K )  =  K  <->  A. i  e.  (
0..^ ( ( # `  y )  +  1 ) ) ( ( ( y ++  <" z "> ) `  i
) `  K )  =  K ) )
6463adantr 481 . . . . . . 7  |-  ( ( ( y  e. Word  B  /\  z  e.  B
)  /\  ( ( N  e.  Fin  /\  K  e.  N )  /\  ( A. i  e.  (
0..^ ( # `  y
) ) ( ( y `  i ) `
 K )  =  K  ->  ( ( S  gsumg  y ) `  K
)  =  K ) ) )  ->  ( A. i  e.  (
0..^ ( # `  (
y ++  <" z "> ) ) ) ( ( ( y ++ 
<" z "> ) `  i ) `  K )  =  K  <->  A. i  e.  (
0..^ ( ( # `  y )  +  1 ) ) ( ( ( y ++  <" z "> ) `  i
) `  K )  =  K ) )
65 gsmsymgrfix.b . . . . . . . . 9  |-  B  =  ( Base `  S
)
6650, 65gsmsymgrfixlem1 17847 . . . . . . . 8  |-  ( ( ( y  e. Word  B  /\  z  e.  B
)  /\  ( N  e.  Fin  /\  K  e.  N )  /\  ( A. i  e.  (
0..^ ( # `  y
) ) ( ( y `  i ) `
 K )  =  K  ->  ( ( S  gsumg  y ) `  K
)  =  K ) )  ->  ( A. i  e.  ( 0..^ ( ( # `  y
)  +  1 ) ) ( ( ( y ++  <" z "> ) `  i
) `  K )  =  K  ->  ( ( S  gsumg  ( y ++  <" z "> ) ) `  K )  =  K ) )
67663expb 1266 . . . . . . 7  |-  ( ( ( y  e. Word  B  /\  z  e.  B
)  /\  ( ( N  e.  Fin  /\  K  e.  N )  /\  ( A. i  e.  (
0..^ ( # `  y
) ) ( ( y `  i ) `
 K )  =  K  ->  ( ( S  gsumg  y ) `  K
)  =  K ) ) )  ->  ( A. i  e.  (
0..^ ( ( # `  y )  +  1 ) ) ( ( ( y ++  <" z "> ) `  i
) `  K )  =  K  ->  ( ( S  gsumg  ( y ++  <" z "> ) ) `  K )  =  K ) )
6864, 67sylbid 230 . . . . . 6  |-  ( ( ( y  e. Word  B  /\  z  e.  B
)  /\  ( ( N  e.  Fin  /\  K  e.  N )  /\  ( A. i  e.  (
0..^ ( # `  y
) ) ( ( y `  i ) `
 K )  =  K  ->  ( ( S  gsumg  y ) `  K
)  =  K ) ) )  ->  ( A. i  e.  (
0..^ ( # `  (
y ++  <" z "> ) ) ) ( ( ( y ++ 
<" z "> ) `  i ) `  K )  =  K  ->  ( ( S 
gsumg  ( y ++  <" z "> ) ) `  K )  =  K ) )
6968exp32 631 . . . . 5  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( ( N  e. 
Fin  /\  K  e.  N )  ->  (
( A. i  e.  ( 0..^ ( # `  y ) ) ( ( y `  i
) `  K )  =  K  ->  ( ( S  gsumg  y ) `  K
)  =  K )  ->  ( A. i  e.  ( 0..^ ( # `  ( y ++  <" z "> ) ) ) ( ( ( y ++ 
<" z "> ) `  i ) `  K )  =  K  ->  ( ( S 
gsumg  ( y ++  <" z "> ) ) `  K )  =  K ) ) ) )
7069a2d 29 . . . 4  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( ( ( N  e.  Fin  /\  K  e.  N )  ->  ( A. i  e.  (
0..^ ( # `  y
) ) ( ( y `  i ) `
 K )  =  K  ->  ( ( S  gsumg  y ) `  K
)  =  K ) )  ->  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( A. i  e.  (
0..^ ( # `  (
y ++  <" z "> ) ) ) ( ( ( y ++ 
<" z "> ) `  i ) `  K )  =  K  ->  ( ( S 
gsumg  ( y ++  <" z "> ) ) `  K )  =  K ) ) ) )
7116, 27, 38, 49, 60, 70wrdind 13476 . . 3  |-  ( W  e. Word  B  ->  (
( N  e.  Fin  /\  K  e.  N )  ->  ( A. i  e.  ( 0..^ ( # `  W ) ) ( ( W `  i
) `  K )  =  K  ->  ( ( S  gsumg  W ) `  K
)  =  K ) ) )
7271com12 32 . 2  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( W  e. Word  B  ->  ( A. i  e.  ( 0..^ ( # `  W ) ) ( ( W `  i
) `  K )  =  K  ->  ( ( S  gsumg  W ) `  K
)  =  K ) ) )
73723impia 1261 1  |-  ( ( N  e.  Fin  /\  K  e.  N  /\  W  e. Word  B )  ->  ( A. i  e.  ( 0..^ ( # `  W ) ) ( ( W `  i
) `  K )  =  K  ->  ( ( S  gsumg  W ) `  K
)  =  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   (/)c0 3915    _I cid 5023    |` cres 5116   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101   SymGrpcsymg 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-symg 17798
This theorem is referenced by:  psgndiflemB  19946
  Copyright terms: Public domain W3C validator