MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcyg Structured version   Visualization version   Unicode version

Theorem ghmcyg 18297
Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1  |-  B  =  ( Base `  G
)
ghmcyg.1  |-  C  =  ( Base `  H
)
Assertion
Ref Expression
ghmcyg  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  F : B -onto-> C )  ->  ( G  e. CycGrp  ->  H  e. CycGrp
) )

Proof of Theorem ghmcyg
Dummy variables  m  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . 4  |-  B  =  ( Base `  G
)
2 eqid 2622 . . . 4  |-  (.g `  G
)  =  (.g `  G
)
31, 2iscyg 18281 . . 3  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\ 
E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )
43simprbi 480 . 2  |-  ( G  e. CycGrp  ->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B )
5 ghmcyg.1 . . . 4  |-  C  =  ( Base `  H
)
6 eqid 2622 . . . 4  |-  (.g `  H
)  =  (.g `  H
)
7 ghmgrp2 17663 . . . . 5  |-  ( F  e.  ( G  GrpHom  H )  ->  H  e.  Grp )
87ad2antrr 762 . . . 4  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  H  e.  Grp )
9 fof 6115 . . . . . 6  |-  ( F : B -onto-> C  ->  F : B --> C )
109ad2antlr 763 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  F : B --> C )
11 simprl 794 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  x  e.  B )
1210, 11ffvelrnd 6360 . . . 4  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  ( F `  x )  e.  C )
13 simplr 792 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  F : B -onto-> C )
14 foeq2 6112 . . . . . . . . 9  |-  ( ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B  ->  ( F : ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C  <->  F : B -onto-> C ) )
1514ad2antll 765 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  ( F : ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C  <->  F : B -onto-> C ) )
1613, 15mpbird 247 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  F : ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C )
17 foelrn 6378 . . . . . . 7  |-  ( ( F : ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C  /\  y  e.  C )  ->  E. z  e.  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) ) y  =  ( F `
 z ) )
1816, 17sylan 488 . . . . . 6  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  E. z  e.  ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) y  =  ( F `  z ) )
19 ovex 6678 . . . . . . . 8  |-  ( m (.g `  G ) x )  e.  _V
2019rgenw 2924 . . . . . . 7  |-  A. m  e.  ZZ  ( m (.g `  G ) x )  e.  _V
21 oveq1 6657 . . . . . . . . 9  |-  ( n  =  m  ->  (
n (.g `  G ) x )  =  ( m (.g `  G ) x ) )
2221cbvmptv 4750 . . . . . . . 8  |-  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  ( m  e.  ZZ  |->  ( m (.g `  G ) x ) )
23 fveq2 6191 . . . . . . . . 9  |-  ( z  =  ( m (.g `  G ) x )  ->  ( F `  z )  =  ( F `  ( m (.g `  G ) x ) ) )
2423eqeq2d 2632 . . . . . . . 8  |-  ( z  =  ( m (.g `  G ) x )  ->  ( y  =  ( F `  z
)  <->  y  =  ( F `  ( m (.g `  G ) x ) ) ) )
2522, 24rexrnmpt 6369 . . . . . . 7  |-  ( A. m  e.  ZZ  (
m (.g `  G ) x )  e.  _V  ->  ( E. z  e.  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) ) y  =  ( F `
 z )  <->  E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G ) x ) ) ) )
2620, 25ax-mp 5 . . . . . 6  |-  ( E. z  e.  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) ) y  =  ( F `  z
)  <->  E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G
) x ) ) )
2718, 26sylib 208 . . . . 5  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G ) x ) ) )
28 simp-4l 806 . . . . . . . 8  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  F  e.  ( G  GrpHom  H ) )
29 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  m  e.  ZZ )
3011ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  x  e.  B )
311, 2, 6ghmmulg 17672 . . . . . . . 8  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  m  e.  ZZ  /\  x  e.  B )  ->  ( F `  ( m
(.g `  G ) x ) )  =  ( m (.g `  H ) ( F `  x ) ) )
3228, 29, 30, 31syl3anc 1326 . . . . . . 7  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  ( F `
 ( m (.g `  G ) x ) )  =  ( m (.g `  H ) ( F `  x ) ) )
3332eqeq2d 2632 . . . . . 6  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  ( y  =  ( F `  ( m (.g `  G
) x ) )  <-> 
y  =  ( m (.g `  H ) ( F `  x ) ) ) )
3433rexbidva 3049 . . . . 5  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  ( E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G
) x ) )  <->  E. m  e.  ZZ  y  =  ( m
(.g `  H ) ( F `  x ) ) ) )
3527, 34mpbid 222 . . . 4  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  E. m  e.  ZZ  y  =  ( m (.g `  H ) ( F `  x ) ) )
365, 6, 8, 12, 35iscygd 18289 . . 3  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  H  e. CycGrp )
3736rexlimdvaa 3032 . 2  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  F : B -onto-> C )  ->  ( E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B  ->  H  e. CycGrp ) )
384, 37syl5 34 1  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  F : B -onto-> C )  ->  ( G  e. CycGrp  ->  H  e. CycGrp
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    |-> cmpt 4729   ran crn 5115   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   ZZcz 11377   Basecbs 15857   Grpcgrp 17422  .gcmg 17540    GrpHom cghm 17657  CycGrpccyg 18279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-mulg 17541  df-ghm 17658  df-cyg 18280
This theorem is referenced by:  giccyg  18301
  Copyright terms: Public domain W3C validator