MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isleag Structured version   Visualization version   Unicode version

Theorem isleag 25733
Description: Geometrical "less than" property for angles. Definition 11.27 of [Schwabhauser] p. 102. (Contributed by Thierry Arnoux, 7-Oct-2020.)
Hypotheses
Ref Expression
isleag.p  |-  P  =  ( Base `  G
)
isleag.g  |-  ( ph  ->  G  e. TarskiG )
isleag.a  |-  ( ph  ->  A  e.  P )
isleag.b  |-  ( ph  ->  B  e.  P )
isleag.c  |-  ( ph  ->  C  e.  P )
isleag.d  |-  ( ph  ->  D  e.  P )
isleag.e  |-  ( ph  ->  E  e.  P )
isleag.f  |-  ( ph  ->  F  e.  P )
Assertion
Ref Expression
isleag  |-  ( ph  ->  ( <" A B C "> ( `  G
) <" D E F ">  <->  E. x  e.  P  ( x
(inA `  G ) <" D E F ">  /\  <" A B C "> (cgrA `  G ) <" D E x "> ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D    x, E    x, F    x, G    x, P    ph, x

Proof of Theorem isleag
Dummy variables  a 
b  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isleag.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
2 elex 3212 . . . . 5  |-  ( G  e. TarskiG  ->  G  e.  _V )
3 fveq2 6191 . . . . . . . . . . . 12  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 isleag.p . . . . . . . . . . . 12  |-  P  =  ( Base `  G
)
53, 4syl6eqr 2674 . . . . . . . . . . 11  |-  ( g  =  G  ->  ( Base `  g )  =  P )
65oveq1d 6665 . . . . . . . . . 10  |-  ( g  =  G  ->  (
( Base `  g )  ^m  ( 0..^ 3 ) )  =  ( P  ^m  ( 0..^ 3 ) ) )
76eleq2d 2687 . . . . . . . . 9  |-  ( g  =  G  ->  (
a  e.  ( (
Base `  g )  ^m  ( 0..^ 3 ) )  <->  a  e.  ( P  ^m  ( 0..^ 3 ) ) ) )
86eleq2d 2687 . . . . . . . . 9  |-  ( g  =  G  ->  (
b  e.  ( (
Base `  g )  ^m  ( 0..^ 3 ) )  <->  b  e.  ( P  ^m  ( 0..^ 3 ) ) ) )
97, 8anbi12d 747 . . . . . . . 8  |-  ( g  =  G  ->  (
( a  e.  ( ( Base `  g
)  ^m  ( 0..^ 3 ) )  /\  b  e.  ( ( Base `  g )  ^m  ( 0..^ 3 ) ) )  <->  ( a  e.  ( P  ^m  (
0..^ 3 ) )  /\  b  e.  ( P  ^m  ( 0..^ 3 ) ) ) ) )
10 fveq2 6191 . . . . . . . . . . 11  |-  ( g  =  G  ->  (inA `  g )  =  (inA
`  G ) )
1110breqd 4664 . . . . . . . . . 10  |-  ( g  =  G  ->  (
x (inA `  g
) <" ( b `
 0 ) ( b `  1 ) ( b `  2
) ">  <->  x (inA `  G ) <" (
b `  0 )
( b `  1
) ( b ` 
2 ) "> ) )
12 fveq2 6191 . . . . . . . . . . 11  |-  ( g  =  G  ->  (cgrA `  g )  =  (cgrA `  G ) )
1312breqd 4664 . . . . . . . . . 10  |-  ( g  =  G  ->  ( <" ( a ` 
0 ) ( a `
 1 ) ( a `  2 ) "> (cgrA `  g ) <" (
b `  0 )
( b `  1
) x ">  <->  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
)
1411, 13anbi12d 747 . . . . . . . . 9  |-  ( g  =  G  ->  (
( x (inA `  g ) <" (
b `  0 )
( b `  1
) ( b ` 
2 ) ">  /\ 
<" ( a ` 
0 ) ( a `
 1 ) ( a `  2 ) "> (cgrA `  g ) <" (
b `  0 )
( b `  1
) x "> ) 
<->  ( x (inA `  G ) <" (
b `  0 )
( b `  1
) ( b ` 
2 ) ">  /\ 
<" ( a ` 
0 ) ( a `
 1 ) ( a `  2 ) "> (cgrA `  G ) <" (
b `  0 )
( b `  1
) x "> ) ) )
155, 14rexeqbidv 3153 . . . . . . . 8  |-  ( g  =  G  ->  ( E. x  e.  ( Base `  g ) ( x (inA `  g
) <" ( b `
 0 ) ( b `  1 ) ( b `  2
) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  g
) <" ( b `
 0 ) ( b `  1 ) x "> )  <->  E. x  e.  P  ( x (inA `  G
) <" ( b `
 0 ) ( b `  1 ) ( b `  2
) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) )
169, 15anbi12d 747 . . . . . . 7  |-  ( g  =  G  ->  (
( ( a  e.  ( ( Base `  g
)  ^m  ( 0..^ 3 ) )  /\  b  e.  ( ( Base `  g )  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  ( Base `  g
) ( x (inA
`  g ) <" ( b ` 
0 ) ( b `
 1 ) ( b `  2 ) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  g
) <" ( b `
 0 ) ( b `  1 ) x "> )
)  <->  ( ( a  e.  ( P  ^m  ( 0..^ 3 ) )  /\  b  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  ( x (inA
`  G ) <" ( b ` 
0 ) ( b `
 1 ) ( b `  2 ) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) ) )
1716opabbidv 4716 . . . . . 6  |-  ( g  =  G  ->  { <. a ,  b >.  |  ( ( a  e.  ( ( Base `  g
)  ^m  ( 0..^ 3 ) )  /\  b  e.  ( ( Base `  g )  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  ( Base `  g
) ( x (inA
`  g ) <" ( b ` 
0 ) ( b `
 1 ) ( b `  2 ) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  g
) <" ( b `
 0 ) ( b `  1 ) x "> )
) }  =  { <. a ,  b >.  |  ( ( a  e.  ( P  ^m  ( 0..^ 3 ) )  /\  b  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  ( x (inA
`  G ) <" ( b ` 
0 ) ( b `
 1 ) ( b `  2 ) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) } )
18 df-leag 25732 . . . . . 6  |-  =  ( g  e.  _V  |->  { <. a ,  b >.  |  ( ( a  e.  ( ( Base `  g
)  ^m  ( 0..^ 3 ) )  /\  b  e.  ( ( Base `  g )  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  ( Base `  g
) ( x (inA
`  g ) <" ( b ` 
0 ) ( b `
 1 ) ( b `  2 ) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  g
) <" ( b `
 0 ) ( b `  1 ) x "> )
) } )
19 ovex 6678 . . . . . . . 8  |-  ( P  ^m  ( 0..^ 3 ) )  e.  _V
20 xpexg 6960 . . . . . . . 8  |-  ( ( ( P  ^m  (
0..^ 3 ) )  e.  _V  /\  ( P  ^m  ( 0..^ 3 ) )  e.  _V )  ->  ( ( P  ^m  ( 0..^ 3 ) )  X.  ( P  ^m  ( 0..^ 3 ) ) )  e. 
_V )
2119, 19, 20mp2an 708 . . . . . . 7  |-  ( ( P  ^m  ( 0..^ 3 ) )  X.  ( P  ^m  (
0..^ 3 ) ) )  e.  _V
22 opabssxp 5193 . . . . . . 7  |-  { <. a ,  b >.  |  ( ( a  e.  ( P  ^m  ( 0..^ 3 ) )  /\  b  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  (
x (inA `  G
) <" ( b `
 0 ) ( b `  1 ) ( b `  2
) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) }  C_  (
( P  ^m  (
0..^ 3 ) )  X.  ( P  ^m  ( 0..^ 3 ) ) )
2321, 22ssexi 4803 . . . . . 6  |-  { <. a ,  b >.  |  ( ( a  e.  ( P  ^m  ( 0..^ 3 ) )  /\  b  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  (
x (inA `  G
) <" ( b `
 0 ) ( b `  1 ) ( b `  2
) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) }  e.  _V
2417, 18, 23fvmpt 6282 . . . . 5  |-  ( G  e.  _V  ->  ( `  G
)  =  { <. a ,  b >.  |  ( ( a  e.  ( P  ^m  ( 0..^ 3 ) )  /\  b  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  (
x (inA `  G
) <" ( b `
 0 ) ( b `  1 ) ( b `  2
) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) } )
251, 2, 243syl 18 . . . 4  |-  ( ph  ->  (
`  G )  =  { <. a ,  b
>.  |  ( (
a  e.  ( P  ^m  ( 0..^ 3 ) )  /\  b  e.  ( P  ^m  (
0..^ 3 ) ) )  /\  E. x  e.  P  ( x
(inA `  G ) <" ( b ` 
0 ) ( b `
 1 ) ( b `  2 ) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) } )
2625breqd 4664 . . 3  |-  ( ph  ->  ( <" A B C "> ( `  G
) <" D E F ">  <->  <" A B C "> { <. a ,  b >.  |  ( ( a  e.  ( P  ^m  ( 0..^ 3 ) )  /\  b  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  (
x (inA `  G
) <" ( b `
 0 ) ( b `  1 ) ( b `  2
) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) } <" D E F "> )
)
27 simpr 477 . . . . . . . . . 10  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  b  =  <" D E F "> )
2827fveq1d 6193 . . . . . . . . 9  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  ( b `  0
)  =  ( <" D E F "> `  0
) )
2927fveq1d 6193 . . . . . . . . 9  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  ( b `  1
)  =  ( <" D E F "> `  1
) )
3027fveq1d 6193 . . . . . . . . 9  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  ( b `  2
)  =  ( <" D E F "> `  2
) )
3128, 29, 30s3eqd 13609 . . . . . . . 8  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  <" ( b `
 0 ) ( b `  1 ) ( b `  2
) ">  =  <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) ( <" D E F "> `  2
) "> )
3231breq2d 4665 . . . . . . 7  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  ( x (inA `  G ) <" (
b `  0 )
( b `  1
) ( b ` 
2 ) ">  <->  x
(inA `  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) ( <" D E F "> `  2
) "> )
)
33 simpl 473 . . . . . . . . . 10  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  a  =  <" A B C "> )
3433fveq1d 6193 . . . . . . . . 9  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  ( a `  0
)  =  ( <" A B C "> `  0
) )
3533fveq1d 6193 . . . . . . . . 9  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  ( a `  1
)  =  ( <" A B C "> `  1
) )
3633fveq1d 6193 . . . . . . . . 9  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  ( a `  2
)  =  ( <" A B C "> `  2
) )
3734, 35, 36s3eqd 13609 . . . . . . . 8  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  <" ( a `
 0 ) ( a `  1 ) ( a `  2
) ">  =  <" ( <" A B C "> `  0
) ( <" A B C "> `  1
) ( <" A B C "> `  2
) "> )
38 eqidd 2623 . . . . . . . . 9  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  x  =  x )
3928, 29, 38s3eqd 13609 . . . . . . . 8  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  <" ( b `
 0 ) ( b `  1 ) x ">  =  <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) x "> )
4037, 39breq12d 4666 . . . . . . 7  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  ( <" (
a `  0 )
( a `  1
) ( a ` 
2 ) "> (cgrA `  G ) <" ( b ` 
0 ) ( b `
 1 ) x ">  <->  <" ( <" A B C "> `  0
) ( <" A B C "> `  1
) ( <" A B C "> `  2
) "> (cgrA `  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) x "> ) )
4132, 40anbi12d 747 . . . . . 6  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  ( ( x (inA
`  G ) <" ( b ` 
0 ) ( b `
 1 ) ( b `  2 ) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )  <->  ( x (inA `  G
) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) ( <" D E F "> `  2
) ">  /\  <" ( <" A B C "> `  0
) ( <" A B C "> `  1
) ( <" A B C "> `  2
) "> (cgrA `  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) x "> ) ) )
4241rexbidv 3052 . . . . 5  |-  ( ( a  =  <" A B C ">  /\  b  =  <" D E F "> )  ->  ( E. x  e.  P  ( x (inA
`  G ) <" ( b ` 
0 ) ( b `
 1 ) ( b `  2 ) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )  <->  E. x  e.  P  ( x (inA `  G
) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) ( <" D E F "> `  2
) ">  /\  <" ( <" A B C "> `  0
) ( <" A B C "> `  1
) ( <" A B C "> `  2
) "> (cgrA `  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) x "> ) ) )
43 eqid 2622 . . . . 5  |-  { <. a ,  b >.  |  ( ( a  e.  ( P  ^m  ( 0..^ 3 ) )  /\  b  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  (
x (inA `  G
) <" ( b `
 0 ) ( b `  1 ) ( b `  2
) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) }  =  { <. a ,  b >.  |  ( ( a  e.  ( P  ^m  ( 0..^ 3 ) )  /\  b  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  ( x (inA
`  G ) <" ( b ` 
0 ) ( b `
 1 ) ( b `  2 ) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) }
4442, 43brab2a 5194 . . . 4  |-  ( <" A B C "> { <. a ,  b >.  |  ( ( a  e.  ( P  ^m  ( 0..^ 3 ) )  /\  b  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  (
x (inA `  G
) <" ( b `
 0 ) ( b `  1 ) ( b `  2
) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) } <" D E F ">  <->  ( ( <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) )  /\  <" D E F ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  ( x (inA
`  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) ( <" D E F "> `  2
) ">  /\  <" ( <" A B C "> `  0
) ( <" A B C "> `  1
) ( <" A B C "> `  2
) "> (cgrA `  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) x "> ) ) )
4544a1i 11 . . 3  |-  ( ph  ->  ( <" A B C "> { <. a ,  b >.  |  ( ( a  e.  ( P  ^m  ( 0..^ 3 ) )  /\  b  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  (
x (inA `  G
) <" ( b `
 0 ) ( b `  1 ) ( b `  2
) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  G
) <" ( b `
 0 ) ( b `  1 ) x "> )
) } <" D E F ">  <->  ( ( <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) )  /\  <" D E F ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  ( x (inA
`  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) ( <" D E F "> `  2
) ">  /\  <" ( <" A B C "> `  0
) ( <" A B C "> `  1
) ( <" A B C "> `  2
) "> (cgrA `  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) x "> ) ) ) )
46 isleag.d . . . . . . . . 9  |-  ( ph  ->  D  e.  P )
47 s3fv0 13636 . . . . . . . . 9  |-  ( D  e.  P  ->  ( <" D E F "> `  0
)  =  D )
4846, 47syl 17 . . . . . . . 8  |-  ( ph  ->  ( <" D E F "> `  0
)  =  D )
49 isleag.e . . . . . . . . 9  |-  ( ph  ->  E  e.  P )
50 s3fv1 13637 . . . . . . . . 9  |-  ( E  e.  P  ->  ( <" D E F "> `  1
)  =  E )
5149, 50syl 17 . . . . . . . 8  |-  ( ph  ->  ( <" D E F "> `  1
)  =  E )
52 isleag.f . . . . . . . . 9  |-  ( ph  ->  F  e.  P )
53 s3fv2 13638 . . . . . . . . 9  |-  ( F  e.  P  ->  ( <" D E F "> `  2
)  =  F )
5452, 53syl 17 . . . . . . . 8  |-  ( ph  ->  ( <" D E F "> `  2
)  =  F )
5548, 51, 54s3eqd 13609 . . . . . . 7  |-  ( ph  ->  <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) ( <" D E F "> `  2
) ">  =  <" D E F "> )
5655breq2d 4665 . . . . . 6  |-  ( ph  ->  ( x (inA `  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) ( <" D E F "> `  2
) ">  <->  x (inA `  G ) <" D E F "> )
)
57 isleag.a . . . . . . . . 9  |-  ( ph  ->  A  e.  P )
58 s3fv0 13636 . . . . . . . . 9  |-  ( A  e.  P  ->  ( <" A B C "> `  0
)  =  A )
5957, 58syl 17 . . . . . . . 8  |-  ( ph  ->  ( <" A B C "> `  0
)  =  A )
60 isleag.b . . . . . . . . 9  |-  ( ph  ->  B  e.  P )
61 s3fv1 13637 . . . . . . . . 9  |-  ( B  e.  P  ->  ( <" A B C "> `  1
)  =  B )
6260, 61syl 17 . . . . . . . 8  |-  ( ph  ->  ( <" A B C "> `  1
)  =  B )
63 isleag.c . . . . . . . . 9  |-  ( ph  ->  C  e.  P )
64 s3fv2 13638 . . . . . . . . 9  |-  ( C  e.  P  ->  ( <" A B C "> `  2
)  =  C )
6563, 64syl 17 . . . . . . . 8  |-  ( ph  ->  ( <" A B C "> `  2
)  =  C )
6659, 62, 65s3eqd 13609 . . . . . . 7  |-  ( ph  ->  <" ( <" A B C "> `  0
) ( <" A B C "> `  1
) ( <" A B C "> `  2
) ">  =  <" A B C "> )
67 eqidd 2623 . . . . . . . 8  |-  ( ph  ->  x  =  x )
6848, 51, 67s3eqd 13609 . . . . . . 7  |-  ( ph  ->  <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) x ">  =  <" D E x "> )
6966, 68breq12d 4666 . . . . . 6  |-  ( ph  ->  ( <" ( <" A B C "> `  0
) ( <" A B C "> `  1
) ( <" A B C "> `  2
) "> (cgrA `  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) x ">  <->  <" A B C "> (cgrA `  G ) <" D E x "> ) )
7056, 69anbi12d 747 . . . . 5  |-  ( ph  ->  ( ( x (inA
`  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) ( <" D E F "> `  2
) ">  /\  <" ( <" A B C "> `  0
) ( <" A B C "> `  1
) ( <" A B C "> `  2
) "> (cgrA `  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) x "> ) 
<->  ( x (inA `  G ) <" D E F ">  /\  <" A B C "> (cgrA `  G ) <" D E x "> ) ) )
7170rexbidv 3052 . . . 4  |-  ( ph  ->  ( E. x  e.  P  ( x (inA
`  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) ( <" D E F "> `  2
) ">  /\  <" ( <" A B C "> `  0
) ( <" A B C "> `  1
) ( <" A B C "> `  2
) "> (cgrA `  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) x "> ) 
<->  E. x  e.  P  ( x (inA `  G ) <" D E F ">  /\  <" A B C "> (cgrA `  G ) <" D E x "> ) ) )
7271anbi2d 740 . . 3  |-  ( ph  ->  ( ( ( <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) )  /\  <" D E F ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  ( x (inA
`  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) ( <" D E F "> `  2
) ">  /\  <" ( <" A B C "> `  0
) ( <" A B C "> `  1
) ( <" A B C "> `  2
) "> (cgrA `  G ) <" ( <" D E F "> `  0
) ( <" D E F "> `  1
) x "> ) )  <->  ( ( <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) )  /\  <" D E F ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  ( x (inA
`  G ) <" D E F ">  /\  <" A B C "> (cgrA `  G ) <" D E x "> ) ) ) )
7326, 45, 723bitrd 294 . 2  |-  ( ph  ->  ( <" A B C "> ( `  G
) <" D E F ">  <->  ( ( <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) )  /\  <" D E F ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  ( x (inA
`  G ) <" D E F ">  /\  <" A B C "> (cgrA `  G ) <" D E x "> ) ) ) )
7457, 60, 63s3cld 13617 . . . . . 6  |-  ( ph  ->  <" A B C ">  e. Word  P )
75 s3len 13639 . . . . . . 7  |-  ( # `  <" A B C "> )  =  3
7675a1i 11 . . . . . 6  |-  ( ph  ->  ( # `  <" A B C "> )  =  3
)
7774, 76jca 554 . . . . 5  |-  ( ph  ->  ( <" A B C ">  e. Word  P  /\  ( # `  <" A B C "> )  =  3
) )
78 fvex 6201 . . . . . . 7  |-  ( Base `  G )  e.  _V
794, 78eqeltri 2697 . . . . . 6  |-  P  e. 
_V
80 3nn0 11310 . . . . . 6  |-  3  e.  NN0
81 wrdmap 13336 . . . . . 6  |-  ( ( P  e.  _V  /\  3  e.  NN0 )  -> 
( ( <" A B C ">  e. Word  P  /\  ( # `  <" A B C "> )  =  3
)  <->  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) ) )
8279, 80, 81mp2an 708 . . . . 5  |-  ( (
<" A B C ">  e. Word  P  /\  ( # `  <" A B C "> )  =  3
)  <->  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) )
8377, 82sylib 208 . . . 4  |-  ( ph  ->  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) )
8446, 49, 52s3cld 13617 . . . . . 6  |-  ( ph  ->  <" D E F ">  e. Word  P )
85 s3len 13639 . . . . . . 7  |-  ( # `  <" D E F "> )  =  3
8685a1i 11 . . . . . 6  |-  ( ph  ->  ( # `  <" D E F "> )  =  3
)
8784, 86jca 554 . . . . 5  |-  ( ph  ->  ( <" D E F ">  e. Word  P  /\  ( # `  <" D E F "> )  =  3
) )
88 wrdmap 13336 . . . . . 6  |-  ( ( P  e.  _V  /\  3  e.  NN0 )  -> 
( ( <" D E F ">  e. Word  P  /\  ( # `  <" D E F "> )  =  3
)  <->  <" D E F ">  e.  ( P  ^m  (
0..^ 3 ) ) ) )
8979, 80, 88mp2an 708 . . . . 5  |-  ( (
<" D E F ">  e. Word  P  /\  ( # `  <" D E F "> )  =  3
)  <->  <" D E F ">  e.  ( P  ^m  (
0..^ 3 ) ) )
9087, 89sylib 208 . . . 4  |-  ( ph  ->  <" D E F ">  e.  ( P  ^m  (
0..^ 3 ) ) )
9183, 90jca 554 . . 3  |-  ( ph  ->  ( <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) )  /\  <" D E F ">  e.  ( P  ^m  (
0..^ 3 ) ) ) )
9291biantrurd 529 . 2  |-  ( ph  ->  ( E. x  e.  P  ( x (inA
`  G ) <" D E F ">  /\  <" A B C "> (cgrA `  G ) <" D E x "> )  <->  ( ( <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) )  /\  <" D E F ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  P  ( x (inA
`  G ) <" D E F ">  /\  <" A B C "> (cgrA `  G ) <" D E x "> ) ) ) )
9373, 92bitr4d 271 1  |-  ( ph  ->  ( <" A B C "> ( `  G
) <" D E F ">  <->  E. x  e.  P  ( x
(inA `  G ) <" D E F ">  /\  <" A B C "> (cgrA `  G ) <" D E x "> ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   {copab 4712    X. cxp 5112   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937   2c2 11070   3c3 11071   NN0cn0 11292  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs3 13587   Basecbs 15857  TarskiGcstrkg 25329  cgrAccgra 25699  inAcinag 25726  ≤cleag 25727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-leag 25732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator