Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmodfg Structured version   Visualization version   Unicode version

Theorem islmodfg 37639
Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
islmodfg.b  |-  B  =  ( Base `  W
)
islmodfg.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
islmodfg  |-  ( W  e.  LMod  ->  ( W  e. LFinGen 
<->  E. b  e.  ~P  B ( b  e. 
Fin  /\  ( N `  b )  =  B ) ) )
Distinct variable groups:    W, b    B, b    N, b

Proof of Theorem islmodfg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 df-lfig 37638 . . . 4  |- LFinGen  =  {
a  e.  LMod  |  (
Base `  a )  e.  ( ( LSpan `  a
) " ( ~P ( Base `  a
)  i^i  Fin )
) }
21eleq2i 2693 . . 3  |-  ( W  e. LFinGen 
<->  W  e.  { a  e.  LMod  |  ( Base `  a )  e.  ( ( LSpan `  a
) " ( ~P ( Base `  a
)  i^i  Fin )
) } )
3 fveq2 6191 . . . . 5  |-  ( a  =  W  ->  ( Base `  a )  =  ( Base `  W
) )
4 fveq2 6191 . . . . . . 7  |-  ( a  =  W  ->  ( LSpan `  a )  =  ( LSpan `  W )
)
5 islmodfg.n . . . . . . 7  |-  N  =  ( LSpan `  W )
64, 5syl6eqr 2674 . . . . . 6  |-  ( a  =  W  ->  ( LSpan `  a )  =  N )
73pweqd 4163 . . . . . . 7  |-  ( a  =  W  ->  ~P ( Base `  a )  =  ~P ( Base `  W
) )
87ineq1d 3813 . . . . . 6  |-  ( a  =  W  ->  ( ~P ( Base `  a
)  i^i  Fin )  =  ( ~P ( Base `  W )  i^i 
Fin ) )
96, 8imaeq12d 5467 . . . . 5  |-  ( a  =  W  ->  (
( LSpan `  a ) " ( ~P ( Base `  a )  i^i 
Fin ) )  =  ( N " ( ~P ( Base `  W
)  i^i  Fin )
) )
103, 9eleq12d 2695 . . . 4  |-  ( a  =  W  ->  (
( Base `  a )  e.  ( ( LSpan `  a
) " ( ~P ( Base `  a
)  i^i  Fin )
)  <->  ( Base `  W
)  e.  ( N
" ( ~P ( Base `  W )  i^i 
Fin ) ) ) )
1110elrab3 3364 . . 3  |-  ( W  e.  LMod  ->  ( W  e.  { a  e. 
LMod  |  ( Base `  a )  e.  ( ( LSpan `  a ) " ( ~P ( Base `  a )  i^i 
Fin ) ) }  <-> 
( Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
) ) )
122, 11syl5bb 272 . 2  |-  ( W  e.  LMod  ->  ( W  e. LFinGen 
<->  ( Base `  W
)  e.  ( N
" ( ~P ( Base `  W )  i^i 
Fin ) ) ) )
13 eqid 2622 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
14 eqid 2622 . . . . . 6  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
1513, 14, 5lspf 18974 . . . . 5  |-  ( W  e.  LMod  ->  N : ~P ( Base `  W
) --> ( LSubSp `  W
) )
16 ffn 6045 . . . . 5  |-  ( N : ~P ( Base `  W ) --> ( LSubSp `  W )  ->  N  Fn  ~P ( Base `  W
) )
1715, 16syl 17 . . . 4  |-  ( W  e.  LMod  ->  N  Fn  ~P ( Base `  W
) )
18 inss1 3833 . . . 4  |-  ( ~P ( Base `  W
)  i^i  Fin )  C_ 
~P ( Base `  W
)
19 fvelimab 6253 . . . 4  |-  ( ( N  Fn  ~P ( Base `  W )  /\  ( ~P ( Base `  W
)  i^i  Fin )  C_ 
~P ( Base `  W
) )  ->  (
( Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
)  <->  E. b  e.  ( ~P ( Base `  W
)  i^i  Fin )
( N `  b
)  =  ( Base `  W ) ) )
2017, 18, 19sylancl 694 . . 3  |-  ( W  e.  LMod  ->  ( (
Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
)  <->  E. b  e.  ( ~P ( Base `  W
)  i^i  Fin )
( N `  b
)  =  ( Base `  W ) ) )
21 elin 3796 . . . . . . 7  |-  ( b  e.  ( ~P ( Base `  W )  i^i 
Fin )  <->  ( b  e.  ~P ( Base `  W
)  /\  b  e.  Fin ) )
22 islmodfg.b . . . . . . . . . . 11  |-  B  =  ( Base `  W
)
2322eqcomi 2631 . . . . . . . . . 10  |-  ( Base `  W )  =  B
2423pweqi 4162 . . . . . . . . 9  |-  ~P ( Base `  W )  =  ~P B
2524eleq2i 2693 . . . . . . . 8  |-  ( b  e.  ~P ( Base `  W )  <->  b  e.  ~P B )
2625anbi1i 731 . . . . . . 7  |-  ( ( b  e.  ~P ( Base `  W )  /\  b  e.  Fin )  <->  ( b  e.  ~P B  /\  b  e.  Fin ) )
2721, 26bitri 264 . . . . . 6  |-  ( b  e.  ( ~P ( Base `  W )  i^i 
Fin )  <->  ( b  e.  ~P B  /\  b  e.  Fin ) )
2823eqeq2i 2634 . . . . . 6  |-  ( ( N `  b )  =  ( Base `  W
)  <->  ( N `  b )  =  B )
2927, 28anbi12i 733 . . . . 5  |-  ( ( b  e.  ( ~P ( Base `  W
)  i^i  Fin )  /\  ( N `  b
)  =  ( Base `  W ) )  <->  ( (
b  e.  ~P B  /\  b  e.  Fin )  /\  ( N `  b )  =  B ) )
30 anass 681 . . . . 5  |-  ( ( ( b  e.  ~P B  /\  b  e.  Fin )  /\  ( N `  b )  =  B )  <->  ( b  e. 
~P B  /\  (
b  e.  Fin  /\  ( N `  b )  =  B ) ) )
3129, 30bitri 264 . . . 4  |-  ( ( b  e.  ( ~P ( Base `  W
)  i^i  Fin )  /\  ( N `  b
)  =  ( Base `  W ) )  <->  ( b  e.  ~P B  /\  (
b  e.  Fin  /\  ( N `  b )  =  B ) ) )
3231rexbii2 3039 . . 3  |-  ( E. b  e.  ( ~P ( Base `  W
)  i^i  Fin )
( N `  b
)  =  ( Base `  W )  <->  E. b  e.  ~P  B ( b  e.  Fin  /\  ( N `  b )  =  B ) )
3320, 32syl6bb 276 . 2  |-  ( W  e.  LMod  ->  ( (
Base `  W )  e.  ( N " ( ~P ( Base `  W
)  i^i  Fin )
)  <->  E. b  e.  ~P  B ( b  e. 
Fin  /\  ( N `  b )  =  B ) ) )
3412, 33bitrd 268 1  |-  ( W  e.  LMod  ->  ( W  e. LFinGen 
<->  E. b  e.  ~P  B ( b  e. 
Fin  /\  ( N `  b )  =  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888   Fincfn 7955   Basecbs 15857   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971  LFinGenclfig 37637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lfig 37638
This theorem is referenced by:  islssfg  37640  lnrfg  37689
  Copyright terms: Public domain W3C validator