MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colopp Structured version   Visualization version   Unicode version

Theorem colopp 25661
Description: Opposite sides of a line for colinear points. Theorem 9.18 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p  |-  P  =  ( Base `  G
)
hpgid.i  |-  I  =  (Itv `  G )
hpgid.l  |-  L  =  (LineG `  G )
hpgid.g  |-  ( ph  ->  G  e. TarskiG )
hpgid.d  |-  ( ph  ->  D  e.  ran  L
)
hpgid.a  |-  ( ph  ->  A  e.  P )
hpgid.o  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
colopp.b  |-  ( ph  ->  B  e.  P )
colopp.p  |-  ( ph  ->  C  e.  D )
colopp.1  |-  ( ph  ->  ( C  e.  ( A L B )  \/  A  =  B ) )
Assertion
Ref Expression
colopp  |-  ( ph  ->  ( A O B  <-> 
( C  e.  ( A I B )  /\  -.  A  e.  D  /\  -.  B  e.  D ) ) )
Distinct variable groups:    t, A    t, B    D, a, b, t    G, a, b, t    I,
a, b, t    O, a, b, t    P, a, b, t    ph, t    t, C    L, a, b, t
Allowed substitution hints:    ph( a, b)    A( a, b)    B( a, b)    C( a, b)

Proof of Theorem colopp
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 hpgid.p . . . . . . . 8  |-  P  =  ( Base `  G
)
2 hpgid.i . . . . . . . 8  |-  I  =  (Itv `  G )
3 hpgid.l . . . . . . . 8  |-  L  =  (LineG `  G )
4 hpgid.g . . . . . . . . 9  |-  ( ph  ->  G  e. TarskiG )
54ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  G  e. TarskiG )
6 hpgid.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  P )
76ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  A  e.  P )
8 colopp.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  P )
98ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  B  e.  P )
10 eqid 2622 . . . . . . . . . 10  |-  ( dist `  G )  =  (
dist `  G )
11 hpgid.o . . . . . . . . . 10  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
12 hpgid.d . . . . . . . . . . 11  |-  ( ph  ->  D  e.  ran  L
)
1312ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  D  e.  ran  L )
14 simpllr 799 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  ( -.  A  e.  D  /\  -.  B  e.  D
) )
1514simpld 475 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  -.  A  e.  D )
1614simprd 479 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  -.  B  e.  D )
17 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  y  e.  D )
18 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( t  =  y  ->  (
t  e.  ( A I B )  <->  y  e.  ( A I B ) ) )
1918adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  /\  t  =  y )  ->  (
t  e.  ( A I B )  <->  y  e.  ( A I B ) ) )
20 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  y  e.  ( A I B ) )
2117, 19, 20rspcedvd 3317 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  E. t  e.  D  t  e.  ( A I B ) )
2215, 16, 21jca31 557 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  ( ( -.  A  e.  D  /\  -.  B  e.  D
)  /\  E. t  e.  D  t  e.  ( A I B ) ) )
231, 10, 2, 11, 6, 8islnopp 25631 . . . . . . . . . . . 12  |-  ( ph  ->  ( A O B  <-> 
( ( -.  A  e.  D  /\  -.  B  e.  D )  /\  E. t  e.  D  t  e.  ( A I B ) ) ) )
2423ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  ( A O B  <->  ( ( -.  A  e.  D  /\  -.  B  e.  D
)  /\  E. t  e.  D  t  e.  ( A I B ) ) ) )
2522, 24mpbird 247 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  A O B )
261, 10, 2, 11, 3, 13, 5, 7, 9, 25oppne3 25635 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  A  =/=  B )
271, 2, 3, 5, 7, 9, 26tgelrnln 25525 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  ( A L B )  e.  ran  L )
281, 2, 3, 5, 7, 9, 26tglinerflx1 25528 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  A  e.  ( A L B ) )
291, 10, 2, 11, 3, 13, 5, 7, 9, 25oppne1 25633 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  -.  A  e.  D )
30 nelne1 2890 . . . . . . . . 9  |-  ( ( A  e.  ( A L B )  /\  -.  A  e.  D
)  ->  ( A L B )  =/=  D
)
3128, 29, 30syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  ( A L B )  =/=  D
)
3226neneqd 2799 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  -.  A  =  B )
33 colopp.1 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  e.  ( A L B )  \/  A  =  B ) )
3433orcomd 403 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  =  B  \/  C  e.  ( A L B ) ) )
3534ord 392 . . . . . . . . . . 11  |-  ( ph  ->  ( -.  A  =  B  ->  C  e.  ( A L B ) ) )
3635ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  ( -.  A  =  B  ->  C  e.  ( A L B ) ) )
3732, 36mpd 15 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  C  e.  ( A L B ) )
38 colopp.p . . . . . . . . . 10  |-  ( ph  ->  C  e.  D )
3938ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  C  e.  D )
4037, 39elind 3798 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  C  e.  ( ( A L B )  i^i  D
) )
411, 3, 2, 5, 13, 17tglnpt 25444 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  y  e.  P )
421, 2, 3, 5, 7, 9, 41, 26, 20btwnlng1 25514 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  y  e.  ( A L B ) )
4342, 17elind 3798 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  y  e.  ( ( A L B )  i^i  D
) )
441, 2, 3, 5, 27, 13, 31, 40, 43tglineineq 25538 . . . . . . 7  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  C  =  y )
4544, 20eqeltrd 2701 . . . . . 6  |-  ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  C  e.  ( A I B ) )
4645adantllr 755 . . . . 5  |-  ( ( ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D ) )  /\  E. t  e.  D  t  e.  ( A I B ) )  /\  y  e.  D )  /\  y  e.  ( A I B ) )  ->  C  e.  ( A I B ) )
47 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D
) )  /\  E. t  e.  D  t  e.  ( A I B ) )  ->  E. t  e.  D  t  e.  ( A I B ) )
4818cbvrexv 3172 . . . . . 6  |-  ( E. t  e.  D  t  e.  ( A I B )  <->  E. y  e.  D  y  e.  ( A I B ) )
4947, 48sylib 208 . . . . 5  |-  ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D
) )  /\  E. t  e.  D  t  e.  ( A I B ) )  ->  E. y  e.  D  y  e.  ( A I B ) )
5046, 49r19.29a 3078 . . . 4  |-  ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D
) )  /\  E. t  e.  D  t  e.  ( A I B ) )  ->  C  e.  ( A I B ) )
5138adantr 481 . . . . . 6  |-  ( (
ph  /\  C  e.  ( A I B ) )  ->  C  e.  D )
52 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  ( A I B ) )  /\  t  =  C )  ->  t  =  C )
5352eleq1d 2686 . . . . . 6  |-  ( ( ( ph  /\  C  e.  ( A I B ) )  /\  t  =  C )  ->  (
t  e.  ( A I B )  <->  C  e.  ( A I B ) ) )
54 simpr 477 . . . . . 6  |-  ( (
ph  /\  C  e.  ( A I B ) )  ->  C  e.  ( A I B ) )
5551, 53, 54rspcedvd 3317 . . . . 5  |-  ( (
ph  /\  C  e.  ( A I B ) )  ->  E. t  e.  D  t  e.  ( A I B ) )
5655adantlr 751 . . . 4  |-  ( ( ( ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D
) )  /\  C  e.  ( A I B ) )  ->  E. t  e.  D  t  e.  ( A I B ) )
5750, 56impbida 877 . . 3  |-  ( (
ph  /\  ( -.  A  e.  D  /\  -.  B  e.  D
) )  ->  ( E. t  e.  D  t  e.  ( A I B )  <->  C  e.  ( A I B ) ) )
5857pm5.32da 673 . 2  |-  ( ph  ->  ( ( ( -.  A  e.  D  /\  -.  B  e.  D
)  /\  E. t  e.  D  t  e.  ( A I B ) )  <->  ( ( -.  A  e.  D  /\  -.  B  e.  D
)  /\  C  e.  ( A I B ) ) ) )
59 3anrot 1043 . . . 4  |-  ( ( C  e.  ( A I B )  /\  -.  A  e.  D  /\  -.  B  e.  D
)  <->  ( -.  A  e.  D  /\  -.  B  e.  D  /\  C  e.  ( A I B ) ) )
60 df-3an 1039 . . . 4  |-  ( ( -.  A  e.  D  /\  -.  B  e.  D  /\  C  e.  ( A I B ) )  <->  ( ( -.  A  e.  D  /\  -.  B  e.  D
)  /\  C  e.  ( A I B ) ) )
6159, 60bitri 264 . . 3  |-  ( ( C  e.  ( A I B )  /\  -.  A  e.  D  /\  -.  B  e.  D
)  <->  ( ( -.  A  e.  D  /\  -.  B  e.  D
)  /\  C  e.  ( A I B ) ) )
6261a1i 11 . 2  |-  ( ph  ->  ( ( C  e.  ( A I B )  /\  -.  A  e.  D  /\  -.  B  e.  D )  <->  ( ( -.  A  e.  D  /\  -.  B  e.  D
)  /\  C  e.  ( A I B ) ) ) )
6358, 23, 623bitr4d 300 1  |-  ( ph  ->  ( A O B  <-> 
( C  e.  ( A I B )  /\  -.  A  e.  D  /\  -.  B  e.  D ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   class class class wbr 4653   {copab 4712   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406
This theorem is referenced by:  colhp  25662
  Copyright terms: Public domain W3C validator