| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islshpat | Structured version Visualization version Unicode version | ||
| Description: Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm 34267. (Contributed by NM, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| islshpat.v |
|
| islshpat.s |
|
| islshpat.p |
|
| islshpat.h |
|
| islshpat.a |
|
| islshpat.w |
|
| Ref | Expression |
|---|---|
| islshpat |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islshpat.v |
. . 3
| |
| 2 | eqid 2622 |
. . 3
| |
| 3 | islshpat.s |
. . 3
| |
| 4 | islshpat.p |
. . 3
| |
| 5 | islshpat.h |
. . 3
| |
| 6 | islshpat.w |
. . 3
| |
| 7 | 1, 2, 3, 4, 5, 6 | islshpsm 34267 |
. 2
|
| 8 | df-3an 1039 |
. . . . 5
| |
| 9 | r19.42v 3092 |
. . . . 5
| |
| 10 | 8, 9 | bitr4i 267 |
. . . 4
|
| 11 | df-rex 2918 |
. . . . . . . 8
| |
| 12 | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 13 | 12 | sneqd 4189 |
. . . . . . . . . . . . . . . . . . . 20
|
| 14 | 13 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
|
| 15 | 6 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . 20
|
| 16 | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 17 | 16, 2 | lspsn0 19008 |
. . . . . . . . . . . . . . . . . . . 20
|
| 18 | 15, 17 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
|
| 19 | 14, 18 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
|
| 20 | 19 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
|
| 21 | simplrl 800 |
. . . . . . . . . . . . . . . . . . 19
| |
| 22 | 3 | lsssubg 18957 |
. . . . . . . . . . . . . . . . . . 19
|
| 23 | 15, 21, 22 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
|
| 24 | 16, 4 | lsm01 18084 |
. . . . . . . . . . . . . . . . . 18
|
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . . . . 17
|
| 26 | 20, 25 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
|
| 27 | simplrr 801 |
. . . . . . . . . . . . . . . 16
| |
| 28 | 26, 27 | eqnetrd 2861 |
. . . . . . . . . . . . . . 15
|
| 29 | 28 | ex 450 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | necon2d 2817 |
. . . . . . . . . . . . 13
|
| 31 | 30 | pm4.71rd 667 |
. . . . . . . . . . . 12
|
| 32 | 31 | pm5.32da 673 |
. . . . . . . . . . 11
|
| 33 | 32 | pm5.32da 673 |
. . . . . . . . . 10
|
| 34 | eldifsn 4317 |
. . . . . . . . . . . 12
| |
| 35 | 34 | anbi1i 731 |
. . . . . . . . . . 11
|
| 36 | anass 681 |
. . . . . . . . . . . 12
| |
| 37 | an12 838 |
. . . . . . . . . . . . 13
| |
| 38 | 37 | anbi2i 730 |
. . . . . . . . . . . 12
|
| 39 | 36, 38 | bitri 264 |
. . . . . . . . . . 11
|
| 40 | 35, 39 | bitr2i 265 |
. . . . . . . . . 10
|
| 41 | 33, 40 | syl6bb 276 |
. . . . . . . . 9
|
| 42 | 41 | exbidv 1850 |
. . . . . . . 8
|
| 43 | 11, 42 | syl5bb 272 |
. . . . . . 7
|
| 44 | fvex 6201 |
. . . . . . . . . 10
| |
| 45 | 44 | rexcom4b 3227 |
. . . . . . . . 9
|
| 46 | df-rex 2918 |
. . . . . . . . 9
| |
| 47 | 45, 46 | bitr2i 265 |
. . . . . . . 8
|
| 48 | ancom 466 |
. . . . . . . . . 10
| |
| 49 | 48 | rexbii 3041 |
. . . . . . . . 9
|
| 50 | 49 | exbii 1774 |
. . . . . . . 8
|
| 51 | 47, 50 | bitri 264 |
. . . . . . 7
|
| 52 | 43, 51 | syl6bb 276 |
. . . . . 6
|
| 53 | r19.41v 3089 |
. . . . . . . 8
| |
| 54 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 55 | 54 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 56 | 55 | anbi2d 740 |
. . . . . . . . . 10
|
| 57 | 56 | pm5.32i 669 |
. . . . . . . . 9
|
| 58 | 57 | rexbii 3041 |
. . . . . . . 8
|
| 59 | 53, 58 | bitr3i 266 |
. . . . . . 7
|
| 60 | 59 | exbii 1774 |
. . . . . 6
|
| 61 | 52, 60 | syl6bbr 278 |
. . . . 5
|
| 62 | islshpat.a |
. . . . . . . . 9
| |
| 63 | 1, 2, 16, 62 | islsat 34278 |
. . . . . . . 8
|
| 64 | 6, 63 | syl 17 |
. . . . . . 7
|
| 65 | 64 | anbi1d 741 |
. . . . . 6
|
| 66 | 65 | exbidv 1850 |
. . . . 5
|
| 67 | 61, 66 | bitr4d 271 |
. . . 4
|
| 68 | 10, 67 | syl5bb 272 |
. . 3
|
| 69 | df-3an 1039 |
. . . 4
| |
| 70 | r19.42v 3092 |
. . . . 5
| |
| 71 | df-rex 2918 |
. . . . 5
| |
| 72 | 70, 71 | bitr3i 266 |
. . . 4
|
| 73 | 69, 72 | bitr2i 265 |
. . 3
|
| 74 | 68, 73 | syl6bb 276 |
. 2
|
| 75 | 7, 74 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lsatoms 34263 df-lshyp 34264 |
| This theorem is referenced by: islshpcv 34340 |
| Copyright terms: Public domain | W3C validator |