Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpat Structured version   Visualization version   Unicode version

Theorem islshpat 34304
Description: Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm 34267. (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
islshpat.v  |-  V  =  ( Base `  W
)
islshpat.s  |-  S  =  ( LSubSp `  W )
islshpat.p  |-  .(+)  =  (
LSSum `  W )
islshpat.h  |-  H  =  (LSHyp `  W )
islshpat.a  |-  A  =  (LSAtoms `  W )
islshpat.w  |-  ( ph  ->  W  e.  LMod )
Assertion
Ref Expression
islshpat  |-  ( ph  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/=  V  /\  E. q  e.  A  ( U  .(+)  q )  =  V ) ) )
Distinct variable groups:    .(+) , q    S, q    U, q    V, q    W, q    ph, q
Allowed substitution hints:    A( q)    H( q)

Proof of Theorem islshpat
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 islshpat.v . . 3  |-  V  =  ( Base `  W
)
2 eqid 2622 . . 3  |-  ( LSpan `  W )  =  (
LSpan `  W )
3 islshpat.s . . 3  |-  S  =  ( LSubSp `  W )
4 islshpat.p . . 3  |-  .(+)  =  (
LSSum `  W )
5 islshpat.h . . 3  |-  H  =  (LSHyp `  W )
6 islshpat.w . . 3  |-  ( ph  ->  W  e.  LMod )
71, 2, 3, 4, 5, 6islshpsm 34267 . 2  |-  ( ph  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/=  V  /\  E. v  e.  V  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) )
8 df-3an 1039 . . . . 5  |-  ( ( U  e.  S  /\  U  =/=  V  /\  E. v  e.  V  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  <->  ( ( U  e.  S  /\  U  =/=  V )  /\  E. v  e.  V  ( U  .(+)  ( ( LSpan `  W ) `  { v } ) )  =  V ) )
9 r19.42v 3092 . . . . 5  |-  ( E. v  e.  V  ( ( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V )  <->  ( ( U  e.  S  /\  U  =/=  V )  /\  E. v  e.  V  ( U  .(+)  ( ( LSpan `  W ) `  { v } ) )  =  V ) )
108, 9bitr4i 267 . . . 4  |-  ( ( U  e.  S  /\  U  =/=  V  /\  E. v  e.  V  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  <->  E. v  e.  V  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) )
11 df-rex 2918 . . . . . . . 8  |-  ( E. v  e.  V  ( ( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V )  <->  E. v
( v  e.  V  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) )
12 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  -> 
v  =  ( 0g
`  W ) )
1312sneqd 4189 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  ->  { v }  =  { ( 0g `  W ) } )
1413fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  -> 
( ( LSpan `  W
) `  { v } )  =  ( ( LSpan `  W ) `  { ( 0g `  W ) } ) )
156ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  ->  W  e.  LMod )
16 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0g
`  W )  =  ( 0g `  W
)
1716, 2lspsn0 19008 . . . . . . . . . . . . . . . . . . . 20  |-  ( W  e.  LMod  ->  ( (
LSpan `  W ) `  { ( 0g `  W ) } )  =  { ( 0g
`  W ) } )
1815, 17syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  -> 
( ( LSpan `  W
) `  { ( 0g `  W ) } )  =  { ( 0g `  W ) } )
1914, 18eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  -> 
( ( LSpan `  W
) `  { v } )  =  {
( 0g `  W
) } )
2019oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  -> 
( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  ( U 
.(+)  { ( 0g `  W ) } ) )
21 simplrl 800 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  ->  U  e.  S )
223lsssubg 18957 . . . . . . . . . . . . . . . . . . 19  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
2315, 21, 22syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  ->  U  e.  (SubGrp `  W
) )
2416, 4lsm01 18084 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  (SubGrp `  W
)  ->  ( U  .(+)  { ( 0g `  W ) } )  =  U )
2523, 24syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  -> 
( U  .(+)  { ( 0g `  W ) } )  =  U )
2620, 25eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  -> 
( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  U )
27 simplrr 801 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  ->  U  =/=  V )
2826, 27eqnetrd 2861 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V
) )  /\  v  =  ( 0g `  W ) )  -> 
( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =/=  V )
2928ex 450 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V ) )  ->  ( v  =  ( 0g `  W
)  ->  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =/= 
V ) )
3029necon2d 2817 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V ) )  ->  ( ( U 
.(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V  ->  v  =/=  ( 0g `  W
) ) )
3130pm4.71rd 667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  v  e.  V )  /\  ( U  e.  S  /\  U  =/=  V ) )  ->  ( ( U 
.(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V  <->  ( v  =/=  ( 0g `  W
)  /\  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V ) ) )
3231pm5.32da 673 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  V )  ->  (
( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  <->  ( ( U  e.  S  /\  U  =/=  V )  /\  ( v  =/=  ( 0g `  W )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) ) ) )
3332pm5.32da 673 . . . . . . . . . 10  |-  ( ph  ->  ( ( v  e.  V  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) )  <->  ( v  e.  V  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( v  =/=  ( 0g `  W )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) ) ) ) )
34 eldifsn 4317 . . . . . . . . . . . 12  |-  ( v  e.  ( V  \  { ( 0g `  W ) } )  <-> 
( v  e.  V  /\  v  =/=  ( 0g `  W ) ) )
3534anbi1i 731 . . . . . . . . . . 11  |-  ( ( v  e.  ( V 
\  { ( 0g
`  W ) } )  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) )  <->  ( ( v  e.  V  /\  v  =/=  ( 0g `  W
) )  /\  (
( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V ) ) )
36 anass 681 . . . . . . . . . . . 12  |-  ( ( ( v  e.  V  /\  v  =/=  ( 0g `  W ) )  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) )  <-> 
( v  e.  V  /\  ( v  =/=  ( 0g `  W )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) ) )
37 an12 838 . . . . . . . . . . . . 13  |-  ( ( v  =/=  ( 0g
`  W )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) )  <-> 
( ( U  e.  S  /\  U  =/= 
V )  /\  (
v  =/=  ( 0g
`  W )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) ) )
3837anbi2i 730 . . . . . . . . . . . 12  |-  ( ( v  e.  V  /\  ( v  =/=  ( 0g `  W )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) )  <->  ( v  e.  V  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( v  =/=  ( 0g `  W )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) ) ) )
3936, 38bitri 264 . . . . . . . . . . 11  |-  ( ( ( v  e.  V  /\  v  =/=  ( 0g `  W ) )  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) )  <-> 
( v  e.  V  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  (
v  =/=  ( 0g
`  W )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) ) ) )
4035, 39bitr2i 265 . . . . . . . . . 10  |-  ( ( v  e.  V  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  (
v  =/=  ( 0g
`  W )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) ) )  <->  ( v  e.  ( V  \  {
( 0g `  W
) } )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) )
4133, 40syl6bb 276 . . . . . . . . 9  |-  ( ph  ->  ( ( v  e.  V  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) )  <->  ( v  e.  ( V  \  {
( 0g `  W
) } )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) ) )
4241exbidv 1850 . . . . . . . 8  |-  ( ph  ->  ( E. v ( v  e.  V  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) )  <->  E. v ( v  e.  ( V  \  {
( 0g `  W
) } )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) ) )
4311, 42syl5bb 272 . . . . . . 7  |-  ( ph  ->  ( E. v  e.  V  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  <->  E. v
( v  e.  ( V  \  { ( 0g `  W ) } )  /\  (
( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V ) ) ) )
44 fvex 6201 . . . . . . . . . 10  |-  ( (
LSpan `  W ) `  { v } )  e.  _V
4544rexcom4b 3227 . . . . . . . . 9  |-  ( E. q E. v  e.  ( V  \  {
( 0g `  W
) } ) ( ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  /\  q  =  ( ( LSpan `  W ) `  { v } ) )  <->  E. v  e.  ( V  \  { ( 0g `  W ) } ) ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) )
46 df-rex 2918 . . . . . . . . 9  |-  ( E. v  e.  ( V 
\  { ( 0g
`  W ) } ) ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  <->  E. v
( v  e.  ( V  \  { ( 0g `  W ) } )  /\  (
( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V ) ) )
4745, 46bitr2i 265 . . . . . . . 8  |-  ( E. v ( v  e.  ( V  \  {
( 0g `  W
) } )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) )  <->  E. q E. v  e.  ( V  \  {
( 0g `  W
) } ) ( ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  /\  q  =  ( ( LSpan `  W ) `  { v } ) ) )
48 ancom 466 . . . . . . . . . 10  |-  ( ( ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  /\  q  =  ( ( LSpan `  W ) `  { v } ) )  <->  ( q  =  ( ( LSpan `  W
) `  { v } )  /\  (
( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V ) ) )
4948rexbii 3041 . . . . . . . . 9  |-  ( E. v  e.  ( V 
\  { ( 0g
`  W ) } ) ( ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V )  /\  q  =  ( ( LSpan `  W ) `  { v } ) )  <->  E. v  e.  ( V  \  { ( 0g `  W ) } ) ( q  =  ( ( LSpan `  W ) `  {
v } )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) )
5049exbii 1774 . . . . . . . 8  |-  ( E. q E. v  e.  ( V  \  {
( 0g `  W
) } ) ( ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  /\  q  =  ( ( LSpan `  W ) `  { v } ) )  <->  E. q E. v  e.  ( V  \  {
( 0g `  W
) } ) ( q  =  ( (
LSpan `  W ) `  { v } )  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) )
5147, 50bitri 264 . . . . . . 7  |-  ( E. v ( v  e.  ( V  \  {
( 0g `  W
) } )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) )  <->  E. q E. v  e.  ( V  \  {
( 0g `  W
) } ) ( q  =  ( (
LSpan `  W ) `  { v } )  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) )
5243, 51syl6bb 276 . . . . . 6  |-  ( ph  ->  ( E. v  e.  V  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  <->  E. q E. v  e.  ( V  \  { ( 0g
`  W ) } ) ( q  =  ( ( LSpan `  W
) `  { v } )  /\  (
( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V ) ) ) )
53 r19.41v 3089 . . . . . . . 8  |-  ( E. v  e.  ( V 
\  { ( 0g
`  W ) } ) ( q  =  ( ( LSpan `  W
) `  { v } )  /\  (
( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
q )  =  V ) )  <->  ( E. v  e.  ( V  \  { ( 0g `  W ) } ) q  =  ( (
LSpan `  W ) `  { v } )  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  q )  =  V ) ) )
54 oveq2 6658 . . . . . . . . . . . 12  |-  ( q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( U  .(+)  q )  =  ( U  .(+)  ( ( LSpan `  W ) `  { v } ) ) )
5554eqeq1d 2624 . . . . . . . . . . 11  |-  ( q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( ( U  .(+)  q )  =  V  <->  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V ) )
5655anbi2d 740 . . . . . . . . . 10  |-  ( q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  q )  =  V )  <->  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( (
LSpan `  W ) `  { v } ) )  =  V ) ) )
5756pm5.32i 669 . . . . . . . . 9  |-  ( ( q  =  ( (
LSpan `  W ) `  { v } )  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  q )  =  V ) )  <->  ( q  =  ( ( LSpan `  W ) `  {
v } )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) )
5857rexbii 3041 . . . . . . . 8  |-  ( E. v  e.  ( V 
\  { ( 0g
`  W ) } ) ( q  =  ( ( LSpan `  W
) `  { v } )  /\  (
( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
q )  =  V ) )  <->  E. v  e.  ( V  \  {
( 0g `  W
) } ) ( q  =  ( (
LSpan `  W ) `  { v } )  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) )
5953, 58bitr3i 266 . . . . . . 7  |-  ( ( E. v  e.  ( V  \  { ( 0g `  W ) } ) q  =  ( ( LSpan `  W
) `  { v } )  /\  (
( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
q )  =  V ) )  <->  E. v  e.  ( V  \  {
( 0g `  W
) } ) ( q  =  ( (
LSpan `  W ) `  { v } )  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V ) ) )
6059exbii 1774 . . . . . 6  |-  ( E. q ( E. v  e.  ( V  \  {
( 0g `  W
) } ) q  =  ( ( LSpan `  W ) `  {
v } )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  q )  =  V ) )  <->  E. q E. v  e.  ( V  \  { ( 0g
`  W ) } ) ( q  =  ( ( LSpan `  W
) `  { v } )  /\  (
( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V ) ) )
6152, 60syl6bbr 278 . . . . 5  |-  ( ph  ->  ( E. v  e.  V  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  <->  E. q
( E. v  e.  ( V  \  {
( 0g `  W
) } ) q  =  ( ( LSpan `  W ) `  {
v } )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  q )  =  V ) ) ) )
62 islshpat.a . . . . . . . . 9  |-  A  =  (LSAtoms `  W )
631, 2, 16, 62islsat 34278 . . . . . . . 8  |-  ( W  e.  LMod  ->  ( q  e.  A  <->  E. v  e.  ( V  \  {
( 0g `  W
) } ) q  =  ( ( LSpan `  W ) `  {
v } ) ) )
646, 63syl 17 . . . . . . 7  |-  ( ph  ->  ( q  e.  A  <->  E. v  e.  ( V 
\  { ( 0g
`  W ) } ) q  =  ( ( LSpan `  W ) `  { v } ) ) )
6564anbi1d 741 . . . . . 6  |-  ( ph  ->  ( ( q  e.  A  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  q )  =  V ) )  <-> 
( E. v  e.  ( V  \  {
( 0g `  W
) } ) q  =  ( ( LSpan `  W ) `  {
v } )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  q )  =  V ) ) ) )
6665exbidv 1850 . . . . 5  |-  ( ph  ->  ( E. q ( q  e.  A  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  q )  =  V ) )  <->  E. q
( E. v  e.  ( V  \  {
( 0g `  W
) } ) q  =  ( ( LSpan `  W ) `  {
v } )  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  q )  =  V ) ) ) )
6761, 66bitr4d 271 . . . 4  |-  ( ph  ->  ( E. v  e.  V  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  ( ( LSpan `  W ) `  {
v } ) )  =  V )  <->  E. q
( q  e.  A  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  q )  =  V ) ) ) )
6810, 67syl5bb 272 . . 3  |-  ( ph  ->  ( ( U  e.  S  /\  U  =/= 
V  /\  E. v  e.  V  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V )  <->  E. q
( q  e.  A  /\  ( ( U  e.  S  /\  U  =/= 
V )  /\  ( U  .(+)  q )  =  V ) ) ) )
69 df-3an 1039 . . . 4  |-  ( ( U  e.  S  /\  U  =/=  V  /\  E. q  e.  A  ( U  .(+)  q )  =  V )  <->  ( ( U  e.  S  /\  U  =/=  V )  /\  E. q  e.  A  ( U  .(+)  q )  =  V ) )
70 r19.42v 3092 . . . . 5  |-  ( E. q  e.  A  ( ( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
q )  =  V )  <->  ( ( U  e.  S  /\  U  =/=  V )  /\  E. q  e.  A  ( U  .(+)  q )  =  V ) )
71 df-rex 2918 . . . . 5  |-  ( E. q  e.  A  ( ( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
q )  =  V )  <->  E. q ( q  e.  A  /\  (
( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
q )  =  V ) ) )
7270, 71bitr3i 266 . . . 4  |-  ( ( ( U  e.  S  /\  U  =/=  V
)  /\  E. q  e.  A  ( U  .(+) 
q )  =  V )  <->  E. q ( q  e.  A  /\  (
( U  e.  S  /\  U  =/=  V
)  /\  ( U  .(+) 
q )  =  V ) ) )
7369, 72bitr2i 265 . . 3  |-  ( E. q ( q  e.  A  /\  ( ( U  e.  S  /\  U  =/=  V )  /\  ( U  .(+)  q )  =  V ) )  <-> 
( U  e.  S  /\  U  =/=  V  /\  E. q  e.  A  ( U  .(+)  q )  =  V ) )
7468, 73syl6bb 276 . 2  |-  ( ph  ->  ( ( U  e.  S  /\  U  =/= 
V  /\  E. v  e.  V  ( U  .(+) 
( ( LSpan `  W
) `  { v } ) )  =  V )  <->  ( U  e.  S  /\  U  =/= 
V  /\  E. q  e.  A  ( U  .(+) 
q )  =  V ) ) )
757, 74bitrd 268 1  |-  ( ph  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/=  V  /\  E. q  e.  A  ( U  .(+)  q )  =  V ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   0gc0g 16100  SubGrpcsubg 17588   LSSumclsm 18049   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971  LSAtomsclsa 34261  LSHypclsh 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lsatoms 34263  df-lshyp 34264
This theorem is referenced by:  islshpcv  34340
  Copyright terms: Public domain W3C validator