Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssat Structured version   Visualization version   Unicode version

Theorem lssat 34303
Description: Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 29222 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssat.s  |-  S  =  ( LSubSp `  W )
lssat.a  |-  A  =  (LSAtoms `  W )
Assertion
Ref Expression
lssat  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  U  C.  V )  ->  E. p  e.  A  ( p  C_  V  /\  -.  p  C_  U ) )
Distinct variable groups:    A, p    S, p    U, p    V, p    W, p

Proof of Theorem lssat
StepHypRef Expression
1 dfpss3 3693 . . 3  |-  ( U 
C.  V  <->  ( U  C_  V  /\  -.  V  C_  U ) )
21simprbi 480 . 2  |-  ( U 
C.  V  ->  -.  V  C_  U )
3 ss2rab 3678 . . . . . 6  |-  ( { p  e.  A  |  p  C_  V }  C_  { p  e.  A  |  p  C_  U }  <->  A. p  e.  A  ( p  C_  V  ->  p  C_  U
) )
4 iman 440 . . . . . . 7  |-  ( ( p  C_  V  ->  p 
C_  U )  <->  -.  (
p  C_  V  /\  -.  p  C_  U ) )
54ralbii 2980 . . . . . 6  |-  ( A. p  e.  A  (
p  C_  V  ->  p 
C_  U )  <->  A. p  e.  A  -.  (
p  C_  V  /\  -.  p  C_  U ) )
63, 5bitr2i 265 . . . . 5  |-  ( A. p  e.  A  -.  ( p  C_  V  /\  -.  p  C_  U )  <->  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)
7 simpl1 1064 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  W  e.  LMod )
8 lssat.s . . . . . . . . . . 11  |-  S  =  ( LSubSp `  W )
9 lssat.a . . . . . . . . . . 11  |-  A  =  (LSAtoms `  W )
108, 9lsatlss 34283 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  A  C_  S )
11 rabss2 3685 . . . . . . . . . 10  |-  ( A 
C_  S  ->  { p  e.  A  |  p  C_  U }  C_  { p  e.  S  |  p  C_  U } )
12 uniss 4458 . . . . . . . . . 10  |-  ( { p  e.  A  |  p  C_  U }  C_  { p  e.  S  |  p  C_  U }  ->  U. { p  e.  A  |  p  C_  U }  C_ 
U. { p  e.  S  |  p  C_  U } )
137, 10, 11, 124syl 19 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U. { p  e.  A  |  p  C_  U }  C_  U. {
p  e.  S  |  p  C_  U } )
14 simpl2 1065 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U  e.  S )
15 unimax 4473 . . . . . . . . . . 11  |-  ( U  e.  S  ->  U. {
p  e.  S  |  p  C_  U }  =  U )
1614, 15syl 17 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U. { p  e.  S  |  p  C_  U }  =  U )
17 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  W )  =  (
Base `  W )
1817, 8lssss 18937 . . . . . . . . . . 11  |-  ( U  e.  S  ->  U  C_  ( Base `  W
) )
1914, 18syl 17 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U  C_  ( Base `  W ) )
2016, 19eqsstrd 3639 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U. { p  e.  S  |  p  C_  U }  C_  ( Base `  W ) )
2113, 20sstrd 3613 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U. { p  e.  A  |  p  C_  U }  C_  ( Base `  W ) )
22 uniss 4458 . . . . . . . . 9  |-  ( { p  e.  A  |  p  C_  V }  C_  { p  e.  A  |  p  C_  U }  ->  U. { p  e.  A  |  p  C_  V }  C_ 
U. { p  e.  A  |  p  C_  U } )
2322adantl 482 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U. { p  e.  A  |  p  C_  V }  C_  U. {
p  e.  A  |  p  C_  U } )
24 eqid 2622 . . . . . . . . 9  |-  ( LSpan `  W )  =  (
LSpan `  W )
2517, 24lspss 18984 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { p  e.  A  |  p  C_  U }  C_  ( Base `  W
)  /\  U. { p  e.  A  |  p  C_  V }  C_  U. {
p  e.  A  |  p  C_  U } )  ->  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  V }
)  C_  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  U }
) )
267, 21, 23, 25syl3anc 1326 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  V }
)  C_  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  U }
) )
27 simpl3 1066 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  V  e.  S )
288, 24, 9lssats 34299 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  V  e.  S )  ->  V  =  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  V }
) )
297, 27, 28syl2anc 693 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  V  =  ( ( LSpan `  W
) `  U. { p  e.  A  |  p  C_  V } ) )
308, 24, 9lssats 34299 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( ( LSpan `  W ) `  U. { p  e.  A  |  p  C_  U }
) )
317, 14, 30syl2anc 693 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  U  =  ( ( LSpan `  W
) `  U. { p  e.  A  |  p  C_  U } ) )
3226, 29, 313sstr4d 3648 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }
)  ->  V  C_  U
)
3332ex 450 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  ->  ( { p  e.  A  |  p  C_  V }  C_ 
{ p  e.  A  |  p  C_  U }  ->  V  C_  U )
)
346, 33syl5bi 232 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  ->  ( A. p  e.  A  -.  ( p  C_  V  /\  -.  p  C_  U
)  ->  V  C_  U
) )
3534con3dimp 457 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  -.  V  C_  U
)  ->  -.  A. p  e.  A  -.  (
p  C_  V  /\  -.  p  C_  U ) )
36 dfrex2 2996 . . 3  |-  ( E. p  e.  A  ( p  C_  V  /\  -.  p  C_  U )  <->  -.  A. p  e.  A  -.  ( p  C_  V  /\  -.  p  C_  U
) )
3735, 36sylibr 224 . 2  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  -.  V  C_  U
)  ->  E. p  e.  A  ( p  C_  V  /\  -.  p  C_  U ) )
382, 37sylan2 491 1  |-  ( ( ( W  e.  LMod  /\  U  e.  S  /\  V  e.  S )  /\  U  C.  V )  ->  E. p  e.  A  ( p  C_  V  /\  -.  p  C_  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574    C. wpss 3575   U.cuni 4436   ` cfv 5888   Basecbs 15857   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971  LSAtomsclsa 34261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lsatoms 34263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator