Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem7 Structured version   Visualization version   Unicode version

Theorem knoppcnlem7 32489
Description: Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem7.t  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
knoppcnlem7.f  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
knoppcnlem7.n  |-  ( ph  ->  N  e.  NN )
knoppcnlem7.1  |-  ( ph  ->  C  e.  RR )
knoppcnlem7.2  |-  ( ph  ->  M  e.  NN0 )
Assertion
Ref Expression
knoppcnlem7  |-  ( ph  ->  (  seq 0 (  oF  +  , 
( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `  m
) ) ) ) `
 M )  =  ( w  e.  RR  |->  (  seq 0 (  +  ,  ( F `  w ) ) `  M ) ) )
Distinct variable groups:    m, F, w, z    m, M, w    ph, m, w
Allowed substitution hints:    ph( x, y, z, n)    C( x, y, z, w, m, n)    T( x, y, z, w, m, n)    F( x, y, n)    M( x, y, z, n)    N( x, y, z, w, m, n)

Proof of Theorem knoppcnlem7
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 reex 10027 . . 3  |-  RR  e.  _V
21a1i 11 . 2  |-  ( ph  ->  RR  e.  _V )
3 knoppcnlem7.2 . . 3  |-  ( ph  ->  M  e.  NN0 )
4 elnn0uz 11725 . . 3  |-  ( M  e.  NN0  <->  M  e.  ( ZZ>=
`  0 ) )
53, 4sylib 208 . 2  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
6 eqid 2622 . . . 4  |-  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) )  =  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) )
76a1i 11 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  (
m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) )  =  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) )
8 fveq2 6191 . . . . . . 7  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
98fveq1d 6193 . . . . . 6  |-  ( z  =  w  ->  (
( F `  z
) `  m )  =  ( ( F `
 w ) `  m ) )
109cbvmptv 4750 . . . . 5  |-  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) )  =  ( w  e.  RR  |->  ( ( F `
 w ) `  m ) )
1110a1i 11 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 0 ... M
) )  /\  m  =  k )  -> 
( z  e.  RR  |->  ( ( F `  z ) `  m
) )  =  ( w  e.  RR  |->  ( ( F `  w
) `  m )
) )
12 fveq2 6191 . . . . . 6  |-  ( m  =  k  ->  (
( F `  w
) `  m )  =  ( ( F `
 w ) `  k ) )
1312mpteq2dv 4745 . . . . 5  |-  ( m  =  k  ->  (
w  e.  RR  |->  ( ( F `  w
) `  m )
)  =  ( w  e.  RR  |->  ( ( F `  w ) `
 k ) ) )
1413adantl 482 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 0 ... M
) )  /\  m  =  k )  -> 
( w  e.  RR  |->  ( ( F `  w ) `  m
) )  =  ( w  e.  RR  |->  ( ( F `  w
) `  k )
) )
1511, 14eqtrd 2656 . . 3  |-  ( ( ( ph  /\  k  e.  ( 0 ... M
) )  /\  m  =  k )  -> 
( z  e.  RR  |->  ( ( F `  z ) `  m
) )  =  ( w  e.  RR  |->  ( ( F `  w
) `  k )
) )
16 elfznn0 12433 . . . 4  |-  ( k  e.  ( 0 ... M )  ->  k  e.  NN0 )
1716adantl 482 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  k  e.  NN0 )
181mptex 6486 . . . 4  |-  ( w  e.  RR  |->  ( ( F `  w ) `
 k ) )  e.  _V
1918a1i 11 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  (
w  e.  RR  |->  ( ( F `  w
) `  k )
)  e.  _V )
207, 15, 17, 19fvmptd 6288 . 2  |-  ( (
ph  /\  k  e.  ( 0 ... M
) )  ->  (
( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `  m
) ) ) `  k )  =  ( w  e.  RR  |->  ( ( F `  w
) `  k )
) )
212, 5, 20seqof 12858 1  |-  ( ph  ->  (  seq 0 (  oF  +  , 
( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `  m
) ) ) ) `
 M )  =  ( w  e.  RR  |->  (  seq 0 (  +  ,  ( F `  w ) ) `  M ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    oFcof 6895   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326   |_cfl 12591    seqcseq 12801   ^cexp 12860   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  knoppcnlem8  32490  knoppcnlem9  32491  knoppcnlem11  32493  knoppndvlem4  32506
  Copyright terms: Public domain W3C validator