Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc0scn0 Structured version   Visualization version   Unicode version

Theorem linc0scn0 42212
Description: If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019.)
Hypotheses
Ref Expression
linc0scn0.b  |-  B  =  ( Base `  M
)
linc0scn0.s  |-  S  =  (Scalar `  M )
linc0scn0.0  |-  .0.  =  ( 0g `  S )
linc0scn0.1  |-  .1.  =  ( 1r `  S )
linc0scn0.z  |-  Z  =  ( 0g `  M
)
linc0scn0.f  |-  F  =  ( x  e.  V  |->  if ( x  =  Z ,  .1.  ,  .0.  ) )
Assertion
Ref Expression
linc0scn0  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F ( linC  `  M ) V )  =  Z )
Distinct variable groups:    x, B    x, M    x, V    x, Z    x,  .0.    x,  .1.
Allowed substitution hints:    S( x)    F( x)

Proof of Theorem linc0scn0
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  M  e.  LMod )
2 linc0scn0.s . . . . . . . . 9  |-  S  =  (Scalar `  M )
32lmodring 18871 . . . . . . . 8  |-  ( M  e.  LMod  ->  S  e. 
Ring )
42eqcomi 2631 . . . . . . . . . . 11  |-  (Scalar `  M )  =  S
54fveq2i 6194 . . . . . . . . . 10  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  S )
6 linc0scn0.1 . . . . . . . . . 10  |-  .1.  =  ( 1r `  S )
75, 6ringidcl 18568 . . . . . . . . 9  |-  ( S  e.  Ring  ->  .1.  e.  ( Base `  (Scalar `  M
) ) )
8 linc0scn0.0 . . . . . . . . . 10  |-  .0.  =  ( 0g `  S )
95, 8ring0cl 18569 . . . . . . . . 9  |-  ( S  e.  Ring  ->  .0.  e.  ( Base `  (Scalar `  M
) ) )
107, 9jca 554 . . . . . . . 8  |-  ( S  e.  Ring  ->  (  .1. 
e.  ( Base `  (Scalar `  M ) )  /\  .0.  e.  ( Base `  (Scalar `  M ) ) ) )
113, 10syl 17 . . . . . . 7  |-  ( M  e.  LMod  ->  (  .1. 
e.  ( Base `  (Scalar `  M ) )  /\  .0.  e.  ( Base `  (Scalar `  M ) ) ) )
1211ad2antrr 762 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  x  e.  V )  ->  (  .1.  e.  ( Base `  (Scalar `  M ) )  /\  .0.  e.  ( Base `  (Scalar `  M ) ) ) )
13 ifcl 4130 . . . . . 6  |-  ( (  .1.  e.  ( Base `  (Scalar `  M )
)  /\  .0.  e.  ( Base `  (Scalar `  M
) ) )  ->  if ( x  =  Z ,  .1.  ,  .0.  )  e.  ( Base `  (Scalar `  M )
) )
1412, 13syl 17 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  x  e.  V )  ->  if ( x  =  Z ,  .1.  ,  .0.  )  e.  ( Base `  (Scalar `  M ) ) )
15 linc0scn0.f . . . . 5  |-  F  =  ( x  e.  V  |->  if ( x  =  Z ,  .1.  ,  .0.  ) )
1614, 15fmptd 6385 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  F : V --> ( Base `  (Scalar `  M )
) )
17 fvex 6201 . . . . . 6  |-  ( Base `  (Scalar `  M )
)  e.  _V
1817a1i 11 . . . . 5  |-  ( M  e.  LMod  ->  ( Base `  (Scalar `  M )
)  e.  _V )
19 elmapg 7870 . . . . 5  |-  ( ( ( Base `  (Scalar `  M ) )  e. 
_V  /\  V  e.  ~P B )  ->  ( F  e.  ( ( Base `  (Scalar `  M
) )  ^m  V
)  <->  F : V --> ( Base `  (Scalar `  M )
) ) )
2018, 19sylan 488 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  <->  F : V
--> ( Base `  (Scalar `  M ) ) ) )
2116, 20mpbird 247 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  F  e.  ( ( Base `  (Scalar `  M
) )  ^m  V
) )
22 linc0scn0.b . . . . . . 7  |-  B  =  ( Base `  M
)
2322pweqi 4162 . . . . . 6  |-  ~P B  =  ~P ( Base `  M
)
2423eleq2i 2693 . . . . 5  |-  ( V  e.  ~P B  <->  V  e.  ~P ( Base `  M
) )
2524biimpi 206 . . . 4  |-  ( V  e.  ~P B  ->  V  e.  ~P ( Base `  M ) )
2625adantl 482 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  V  e.  ~P ( Base `  M ) )
27 lincval 42198 . . 3  |-  ( ( M  e.  LMod  /\  F  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  /\  V  e.  ~P ( Base `  M
) )  ->  ( F ( linC  `  M ) V )  =  ( M  gsumg  ( v  e.  V  |->  ( ( F `  v ) ( .s
`  M ) v ) ) ) )
281, 21, 26, 27syl3anc 1326 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F ( linC  `  M ) V )  =  ( M  gsumg  ( v  e.  V  |->  ( ( F `  v ) ( .s `  M
) v ) ) ) )
29 simpr 477 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  v  e.  V )
30 fvex 6201 . . . . . . . . 9  |-  ( 1r
`  S )  e. 
_V
316, 30eqeltri 2697 . . . . . . . 8  |-  .1.  e.  _V
32 fvex 6201 . . . . . . . . 9  |-  ( 0g
`  S )  e. 
_V
338, 32eqeltri 2697 . . . . . . . 8  |-  .0.  e.  _V
3431, 33ifex 4156 . . . . . . 7  |-  if ( v  =  Z ,  .1.  ,  .0.  )  e. 
_V
35 eqeq1 2626 . . . . . . . . 9  |-  ( x  =  v  ->  (
x  =  Z  <->  v  =  Z ) )
3635ifbid 4108 . . . . . . . 8  |-  ( x  =  v  ->  if ( x  =  Z ,  .1.  ,  .0.  )  =  if ( v  =  Z ,  .1.  ,  .0.  ) )
3736, 15fvmptg 6280 . . . . . . 7  |-  ( ( v  e.  V  /\  if ( v  =  Z ,  .1.  ,  .0.  )  e.  _V )  ->  ( F `  v
)  =  if ( v  =  Z ,  .1.  ,  .0.  ) )
3829, 34, 37sylancl 694 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  ( F `  v )  =  if ( v  =  Z ,  .1.  ,  .0.  ) )
3938oveq1d 6665 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  (
( F `  v
) ( .s `  M ) v )  =  ( if ( v  =  Z ,  .1.  ,  .0.  ) ( .s `  M ) v ) )
40 ovif 6737 . . . . . 6  |-  ( if ( v  =  Z ,  .1.  ,  .0.  ) ( .s `  M ) v )  =  if ( v  =  Z ,  (  .1.  ( .s `  M ) v ) ,  (  .0.  ( .s `  M ) v ) )
4140a1i 11 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  ( if ( v  =  Z ,  .1.  ,  .0.  ) ( .s `  M ) v )  =  if ( v  =  Z ,  (  .1.  ( .s `  M ) v ) ,  (  .0.  ( .s `  M ) v ) ) )
42 oveq2 6658 . . . . . . . 8  |-  ( v  =  Z  ->  (  .1.  ( .s `  M
) v )  =  (  .1.  ( .s
`  M ) Z ) )
4342adantl 482 . . . . . . 7  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P B )  /\  v  e.  V )  /\  v  =  Z )  ->  (  .1.  ( .s `  M
) v )  =  (  .1.  ( .s
`  M ) Z ) )
44 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  S )  =  (
Base `  S )
452, 44, 6lmod1cl 18890 . . . . . . . . . . 11  |-  ( M  e.  LMod  ->  .1.  e.  ( Base `  S )
)
4645ancli 574 . . . . . . . . . 10  |-  ( M  e.  LMod  ->  ( M  e.  LMod  /\  .1.  e.  ( Base `  S )
) )
4746adantr 481 . . . . . . . . 9  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( M  e.  LMod  /\  .1.  e.  ( Base `  S ) ) )
4847ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P B )  /\  v  e.  V )  /\  v  =  Z )  ->  ( M  e.  LMod  /\  .1.  e.  ( Base `  S
) ) )
49 eqid 2622 . . . . . . . . 9  |-  ( .s
`  M )  =  ( .s `  M
)
50 linc0scn0.z . . . . . . . . 9  |-  Z  =  ( 0g `  M
)
512, 49, 44, 50lmodvs0 18897 . . . . . . . 8  |-  ( ( M  e.  LMod  /\  .1.  e.  ( Base `  S
) )  ->  (  .1.  ( .s `  M
) Z )  =  Z )
5248, 51syl 17 . . . . . . 7  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P B )  /\  v  e.  V )  /\  v  =  Z )  ->  (  .1.  ( .s `  M
) Z )  =  Z )
5343, 52eqtrd 2656 . . . . . 6  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P B )  /\  v  e.  V )  /\  v  =  Z )  ->  (  .1.  ( .s `  M
) v )  =  Z )
541adantr 481 . . . . . . . 8  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  M  e.  LMod )
55 elelpwi 4171 . . . . . . . . . . 11  |-  ( ( v  e.  V  /\  V  e.  ~P B
)  ->  v  e.  B )
5655expcom 451 . . . . . . . . . 10  |-  ( V  e.  ~P B  -> 
( v  e.  V  ->  v  e.  B ) )
5756adantl 482 . . . . . . . . 9  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( v  e.  V  ->  v  e.  B ) )
5857imp 445 . . . . . . . 8  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  v  e.  B )
5922, 2, 49, 8, 50lmod0vs 18896 . . . . . . . 8  |-  ( ( M  e.  LMod  /\  v  e.  B )  ->  (  .0.  ( .s `  M
) v )  =  Z )
6054, 58, 59syl2anc 693 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  (  .0.  ( .s `  M
) v )  =  Z )
6160adantr 481 . . . . . 6  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P B )  /\  v  e.  V )  /\  -.  v  =  Z )  ->  (  .0.  ( .s
`  M ) v )  =  Z )
6253, 61ifeqda 4121 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  if ( v  =  Z ,  (  .1.  ( .s `  M ) v ) ,  (  .0.  ( .s `  M
) v ) )  =  Z )
6339, 41, 623eqtrd 2660 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  (
( F `  v
) ( .s `  M ) v )  =  Z )
6463mpteq2dva 4744 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( v  e.  V  |->  ( ( F `  v ) ( .s
`  M ) v ) )  =  ( v  e.  V  |->  Z ) )
6564oveq2d 6666 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( M  gsumg  ( v  e.  V  |->  ( ( F `  v ) ( .s
`  M ) v ) ) )  =  ( M  gsumg  ( v  e.  V  |->  Z ) ) )
66 lmodgrp 18870 . . . 4  |-  ( M  e.  LMod  ->  M  e. 
Grp )
67 grpmnd 17429 . . . 4  |-  ( M  e.  Grp  ->  M  e.  Mnd )
6866, 67syl 17 . . 3  |-  ( M  e.  LMod  ->  M  e. 
Mnd )
6950gsumz 17374 . . 3  |-  ( ( M  e.  Mnd  /\  V  e.  ~P B
)  ->  ( M  gsumg  ( v  e.  V  |->  Z ) )  =  Z )
7068, 69sylan 488 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( M  gsumg  ( v  e.  V  |->  Z ) )  =  Z )
7128, 65, 703eqtrd 2660 1  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F ( linC  `  M ) V )  =  Z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   ~Pcpw 4158    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   Grpcgrp 17422   1rcur 18501   Ringcrg 18547   LModclmod 18863   linC clinc 42193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-seq 12802  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-linc 42195
This theorem is referenced by:  el0ldep  42255
  Copyright terms: Public domain W3C validator