MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem4 Structured version   Visualization version   Unicode version

Theorem lgslem4 25025
Description: The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 }, see zabsle1 25021). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgslem4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Distinct variable group:    x, A
Allowed substitution hints:    P( x)    Z( x)

Proof of Theorem lgslem4
StepHypRef Expression
1 simpll 790 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  A  e.  ZZ )
2 oddprm 15515 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
32ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN )
43nnnn0d 11351 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN0 )
5 zexpcl 12875 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
61, 4, 5syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  ZZ )
76zred 11482 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  RR )
8 0red 10041 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  0  e.  RR )
9 1red 10055 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  1  e.  RR )
10 eldifi 3732 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
1110ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  Prime )
12 prmuz2 15408 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
1311, 12syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  ( ZZ>= `  2 )
)
14 eluz2b2 11761 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
1513, 14sylib 208 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( P  e.  NN  /\  1  <  P ) )
1615simpld 475 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  NN )
1716nnrpd 11870 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  RR+ )
18 0zd 11389 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  0  e.  ZZ )
19 simpr 477 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  ||  A )
20 dvdsval3 14987 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  A  e.  ZZ )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
2116, 1, 20syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
2219, 21mpbid 222 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A  mod  P )  =  0 )
23 0mod 12701 . . . . . . . . . . 11  |-  ( P  e.  RR+  ->  ( 0  mod  P )  =  0 )
2417, 23syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
0  mod  P )  =  0 )
2522, 24eqtr4d 2659 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A  mod  P )  =  ( 0  mod  P
) )
26 modexp 12999 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  0  e.  ZZ )  /\  ( ( ( P  -  1 )  /  2 )  e. 
NN0  /\  P  e.  RR+ )  /\  ( A  mod  P )  =  ( 0  mod  P
) )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( ( 0 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
271, 18, 4, 17, 25, 26syl221anc 1337 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( ( 0 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
2830expd 13024 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
0 ^ ( ( P  -  1 )  /  2 ) )  =  0 )
2928oveq1d 6665 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( 0 ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )
3027, 29eqtrd 2656 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )
31 modadd1 12707 . . . . . . 7  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  e.  RR  /\  0  e.  RR )  /\  ( 1  e.  RR  /\  P  e.  RR+ )  /\  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( ( 0  +  1 )  mod  P ) )
327, 8, 9, 17, 30, 31syl221anc 1337 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  ( ( 0  +  1 )  mod 
P ) )
33 0p1e1 11132 . . . . . . 7  |-  ( 0  +  1 )  =  1
3433oveq1i 6660 . . . . . 6  |-  ( ( 0  +  1 )  mod  P )  =  ( 1  mod  P
)
3532, 34syl6eq 2672 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  ( 1  mod 
P ) )
3616nnred 11035 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  RR )
3715simprd 479 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  1  <  P )
38 1mod 12702 . . . . . 6  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
3936, 37, 38syl2anc 693 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
1  mod  P )  =  1 )
4035, 39eqtrd 2656 . . . 4  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  1 )
4140oveq1d 6665 . . 3  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 1  -  1 ) )
42 1m1e0 11089 . . . 4  |-  ( 1  -  1 )  =  0
43 lgslem2.z . . . . . 6  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
4443lgslem2 25023 . . . . 5  |-  ( -u
1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
4544simp2i 1071 . . . 4  |-  0  e.  Z
4642, 45eqeltri 2697 . . 3  |-  ( 1  -  1 )  e.  Z
4741, 46syl6eqel 2709 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
48 lgslem1 25022 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )
49 elpri 4197 . . . 4  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 }  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 ) )
50 oveq1 6657 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 0  -  1 ) )
51 df-neg 10269 . . . . . . 7  |-  -u 1  =  ( 0  -  1 )
5244simp1i 1070 . . . . . . 7  |-  -u 1  e.  Z
5351, 52eqeltrri 2698 . . . . . 6  |-  ( 0  -  1 )  e.  Z
5450, 53syl6eqel 2709 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
55 oveq1 6657 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 2  -  1 ) )
56 2m1e1 11135 . . . . . . 7  |-  ( 2  -  1 )  =  1
5744simp3i 1072 . . . . . . 7  |-  1  e.  Z
5856, 57eqeltri 2697 . . . . . 6  |-  ( 2  -  1 )  e.  Z
5955, 58syl6eqel 2709 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
6054, 59jaoi 394 . . . 4  |-  ( ( ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 )  ->  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  - 
1 )  e.  Z
)
6148, 49, 603syl 18 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
62613expa 1265 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
6347, 62pm2.61dan 832 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571   {csn 4177   {cpr 4179   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832    mod cmo 12668   ^cexp 12860   abscabs 13974    || cdvds 14983   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471
This theorem is referenced by:  lgsfcl2  25028
  Copyright terms: Public domain W3C validator