Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1 Structured version   Visualization version   Unicode version

Theorem lmod1 42281
Description: The (smallest) structure representing a zero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019.)
Hypothesis
Ref Expression
lmod1.m  |-  M  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  y  e.  { I }  |->  y ) >. } )
Assertion
Ref Expression
lmod1  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  M  e.  LMod )
Distinct variable groups:    x, I,
y    x, R, y    x, V, y    x, M, y

Proof of Theorem lmod1
Dummy variables  r 
q  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  { <. (
Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. }  =  { <. (
Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. }
21grp1 17522 . . . 4  |-  ( I  e.  V  ->  { <. (
Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. }  e.  Grp )
3 fvex 6201 . . . . . . 7  |-  ( Base `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } )  e.  _V
4 lmod1.m . . . . . . . . 9  |-  M  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  y  e.  { I }  |->  y ) >. } )
5 snex 4908 . . . . . . . . . . . . 13  |-  { I }  e.  _V
61grpbase 15991 . . . . . . . . . . . . 13  |-  ( { I }  e.  _V  ->  { I }  =  ( Base `  { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. } ) )
75, 6ax-mp 5 . . . . . . . . . . . 12  |-  { I }  =  ( Base `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } )
87opeq2i 4406 . . . . . . . . . . 11  |-  <. ( Base `  ndx ) ,  { I } >.  = 
<. ( Base `  ndx ) ,  ( Base `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >.
9 tpeq1 4277 . . . . . . . . . . 11  |-  ( <.
( Base `  ndx ) ,  { I } >.  = 
<. ( Base `  ndx ) ,  ( Base `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >.  ->  { <. (
Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  =  { <. ( Base `  ndx ) ,  ( Base `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. } )
108, 9ax-mp 5 . . . . . . . . . 10  |-  { <. (
Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  =  { <. ( Base `  ndx ) ,  ( Base `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. }
1110uneq1i 3763 . . . . . . . . 9  |-  ( {
<. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( x  e.  ( Base `  R
) ,  y  e. 
{ I }  |->  y ) >. } )  =  ( { <. ( Base `  ndx ) ,  ( Base `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( x  e.  ( Base `  R
) ,  y  e. 
{ I }  |->  y ) >. } )
124, 11eqtri 2644 . . . . . . . 8  |-  M  =  ( { <. ( Base `  ndx ) ,  ( Base `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( x  e.  ( Base `  R
) ,  y  e. 
{ I }  |->  y ) >. } )
1312lmodbase 16018 . . . . . . 7  |-  ( (
Base `  { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. } )  e.  _V  ->  ( Base `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } )  =  ( Base `  M ) )
143, 13ax-mp 5 . . . . . 6  |-  ( Base `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } )  =  ( Base `  M )
1514eqcomi 2631 . . . . 5  |-  ( Base `  M )  =  (
Base `  { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. } )
16 fvex 6201 . . . . . . 7  |-  ( +g  `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } )  e.  _V
17 snex 4908 . . . . . . . . . . . . 13  |-  { <. <.
I ,  I >. ,  I >. }  e.  _V
181grpplusg 15992 . . . . . . . . . . . . 13  |-  ( {
<. <. I ,  I >. ,  I >. }  e.  _V  ->  { <. <. I ,  I >. ,  I >. }  =  ( +g  `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) )
1917, 18ax-mp 5 . . . . . . . . . . . 12  |-  { <. <.
I ,  I >. ,  I >. }  =  ( +g  `  { <. (
Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. } )
2019opeq2i 4406 . . . . . . . . . . 11  |-  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >.  = 
<. ( +g  `  ndx ) ,  ( +g  `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >.
21 tpeq2 4278 . . . . . . . . . . 11  |-  ( <.
( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >.  = 
<. ( +g  `  ndx ) ,  ( +g  `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >.  ->  { <. (
Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  =  { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  ( +g  `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >. ,  <. (Scalar ` 
ndx ) ,  R >. } )
2220, 21ax-mp 5 . . . . . . . . . 10  |-  { <. (
Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  =  { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  ( +g  `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >. ,  <. (Scalar ` 
ndx ) ,  R >. }
2322uneq1i 3763 . . . . . . . . 9  |-  ( {
<. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( x  e.  ( Base `  R
) ,  y  e. 
{ I }  |->  y ) >. } )  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  ( +g  `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >. ,  <. (Scalar ` 
ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( x  e.  ( Base `  R
) ,  y  e. 
{ I }  |->  y ) >. } )
244, 23eqtri 2644 . . . . . . . 8  |-  M  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  ( +g  `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } ) >. ,  <. (Scalar ` 
ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( x  e.  ( Base `  R
) ,  y  e. 
{ I }  |->  y ) >. } )
2524lmodplusg 16019 . . . . . . 7  |-  ( ( +g  `  { <. (
Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. } )  e.  _V  ->  ( +g  `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } )  =  ( +g  `  M ) )
2616, 25ax-mp 5 . . . . . 6  |-  ( +g  `  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. } )  =  ( +g  `  M )
2726eqcomi 2631 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  { <. (
Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. } )
2815, 27grpprop 17438 . . . 4  |-  ( M  e.  Grp  <->  { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. }  e.  Grp )
292, 28sylibr 224 . . 3  |-  ( I  e.  V  ->  M  e.  Grp )
3029adantr 481 . 2  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  M  e.  Grp )
314lmodsca 16020 . . . . 5  |-  ( R  e.  Ring  ->  R  =  (Scalar `  M )
)
3231eqcomd 2628 . . . 4  |-  ( R  e.  Ring  ->  (Scalar `  M )  =  R )
3332adantl 482 . . 3  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
(Scalar `  M )  =  R )
34 simpr 477 . . 3  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  R  e.  Ring )
3533, 34eqeltrd 2701 . 2  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
(Scalar `  M )  e.  Ring )
3633fveq2d 6195 . . . . . . 7  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( Base `  (Scalar `  M
) )  =  (
Base `  R )
)
3736eleq2d 2687 . . . . . 6  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( q  e.  (
Base `  (Scalar `  M
) )  <->  q  e.  ( Base `  R )
) )
3836eleq2d 2687 . . . . . 6  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( r  e.  (
Base `  (Scalar `  M
) )  <->  r  e.  ( Base `  R )
) )
3937, 38anbi12d 747 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( ( q  e.  ( Base `  (Scalar `  M ) )  /\  r  e.  ( Base `  (Scalar `  M )
) )  <->  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) ) )
40 simpll 790 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  I  e.  V )
41 simplr 792 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  R  e.  Ring )
42 simprr 796 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  r  e.  ( Base `  R
) )
4340, 41, 423jca 1242 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
I  e.  V  /\  R  e.  Ring  /\  r  e.  ( Base `  R
) ) )
444lmod1lem1 42276 . . . . . . . . 9  |-  ( ( I  e.  V  /\  R  e.  Ring  /\  r  e.  ( Base `  R
) )  ->  (
r ( .s `  M ) I )  e.  { I }
)
4543, 44syl 17 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
r ( .s `  M ) I )  e.  { I }
)
464lmod1lem2 42277 . . . . . . . . 9  |-  ( ( I  e.  V  /\  R  e.  Ring  /\  r  e.  ( Base `  R
) )  ->  (
r ( .s `  M ) ( I ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) ) )
4743, 46syl 17 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
r ( .s `  M ) ( I ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) ) )
484lmod1lem3 42278 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) I )  =  ( ( q ( .s
`  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) ) )
4945, 47, 483jca 1242 . . . . . . 7  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
( r ( .s
`  M ) I )  e.  { I }  /\  ( r ( .s `  M ) ( I ( +g  `  M ) I ) )  =  ( ( r ( .s `  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) )  /\  ( ( q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( ( q ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) ) ) )
504lmod1lem4 42279 . . . . . . 7  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
( q ( .r
`  (Scalar `  M )
) r ) ( .s `  M ) I )  =  ( q ( .s `  M ) ( r ( .s `  M
) I ) ) )
514lmod1lem5 42280 . . . . . . . 8  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( ( 1r `  (Scalar `  M ) ) ( .s `  M
) I )  =  I )
5251adantr 481 . . . . . . 7  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) I )  =  I )
5349, 50, 52jca32 558 . . . . . 6  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
( ( r ( .s `  M ) I )  e.  {
I }  /\  (
r ( .s `  M ) ( I ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) I )  =  ( ( q ( .s
`  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) I )  =  ( q ( .s `  M
) ( r ( .s `  M ) I ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) I )  =  I ) ) )
5453ex 450 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
)  ->  ( (
( r ( .s
`  M ) I )  e.  { I }  /\  ( r ( .s `  M ) ( I ( +g  `  M ) I ) )  =  ( ( r ( .s `  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) )  /\  ( ( q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( ( q ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( q ( .s `  M ) ( r ( .s
`  M ) I ) )  /\  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) I )  =  I ) ) ) )
5539, 54sylbid 230 . . . 4  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( ( q  e.  ( Base `  (Scalar `  M ) )  /\  r  e.  ( Base `  (Scalar `  M )
) )  ->  (
( ( r ( .s `  M ) I )  e.  {
I }  /\  (
r ( .s `  M ) ( I ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) I )  =  ( ( q ( .s
`  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) I )  =  ( q ( .s `  M
) ( r ( .s `  M ) I ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) I )  =  I ) ) ) )
5655ralrimivv 2970 . . 3  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  A. q  e.  ( Base `  (Scalar `  M
) ) A. r  e.  ( Base `  (Scalar `  M ) ) ( ( ( r ( .s `  M ) I )  e.  {
I }  /\  (
r ( .s `  M ) ( I ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) I )  =  ( ( q ( .s
`  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) I )  =  ( q ( .s `  M
) ( r ( .s `  M ) I ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) I )  =  I ) ) )
57 oveq2 6658 . . . . . . . . . . . 12  |-  ( x  =  I  ->  (
w ( +g  `  M
) x )  =  ( w ( +g  `  M ) I ) )
5857oveq2d 6666 . . . . . . . . . . 11  |-  ( x  =  I  ->  (
r ( .s `  M ) ( w ( +g  `  M
) x ) )  =  ( r ( .s `  M ) ( w ( +g  `  M ) I ) ) )
59 oveq2 6658 . . . . . . . . . . . 12  |-  ( x  =  I  ->  (
r ( .s `  M ) x )  =  ( r ( .s `  M ) I ) )
6059oveq2d 6666 . . . . . . . . . . 11  |-  ( x  =  I  ->  (
( r ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) x ) )  =  ( ( r ( .s `  M ) w ) ( +g  `  M ) ( r ( .s `  M
) I ) ) )
6158, 60eqeq12d 2637 . . . . . . . . . 10  |-  ( x  =  I  ->  (
( r ( .s
`  M ) ( w ( +g  `  M
) x ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) x ) )  <->  ( r
( .s `  M
) ( w ( +g  `  M ) I ) )  =  ( ( r ( .s `  M ) w ) ( +g  `  M ) ( r ( .s `  M
) I ) ) ) )
62613anbi2d 1404 . . . . . . . . 9  |-  ( x  =  I  ->  (
( ( r ( .s `  M ) w )  e.  {
I }  /\  (
r ( .s `  M ) ( w ( +g  `  M
) x ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) x ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  <-> 
( ( r ( .s `  M ) w )  e.  {
I }  /\  (
r ( .s `  M ) ( w ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) ) ) )
6362anbi1d 741 . . . . . . . 8  |-  ( x  =  I  ->  (
( ( ( r ( .s `  M
) w )  e. 
{ I }  /\  ( r ( .s
`  M ) ( w ( +g  `  M
) x ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) x ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) w )  =  ( q ( .s `  M
) ( r ( .s `  M ) w ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w ) )  <->  ( (
( r ( .s
`  M ) w )  e.  { I }  /\  ( r ( .s `  M ) ( w ( +g  `  M ) I ) )  =  ( ( r ( .s `  M ) w ) ( +g  `  M
) ( r ( .s `  M ) I ) )  /\  ( ( q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) w )  =  ( ( q ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s `  M ) w )  =  ( q ( .s `  M ) ( r ( .s
`  M ) w ) )  /\  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) w )  =  w ) ) ) )
6463ralbidv 2986 . . . . . . 7  |-  ( x  =  I  ->  ( A. w  e.  { I }  ( ( ( r ( .s `  M ) w )  e.  { I }  /\  ( r ( .s
`  M ) ( w ( +g  `  M
) x ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) x ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) w )  =  ( q ( .s `  M
) ( r ( .s `  M ) w ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w ) )  <->  A. w  e.  { I }  (
( ( r ( .s `  M ) w )  e.  {
I }  /\  (
r ( .s `  M ) ( w ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) w )  =  ( q ( .s `  M
) ( r ( .s `  M ) w ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w ) ) ) )
6564ralsng 4218 . . . . . 6  |-  ( I  e.  V  ->  ( A. x  e.  { I } A. w  e.  {
I }  ( ( ( r ( .s
`  M ) w )  e.  { I }  /\  ( r ( .s `  M ) ( w ( +g  `  M ) x ) )  =  ( ( r ( .s `  M ) w ) ( +g  `  M
) ( r ( .s `  M ) x ) )  /\  ( ( q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) w )  =  ( ( q ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s `  M ) w )  =  ( q ( .s `  M ) ( r ( .s
`  M ) w ) )  /\  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) w )  =  w ) )  <->  A. w  e.  { I }  (
( ( r ( .s `  M ) w )  e.  {
I }  /\  (
r ( .s `  M ) ( w ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) w )  =  ( q ( .s `  M
) ( r ( .s `  M ) w ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w ) ) ) )
6665adantr 481 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( A. x  e. 
{ I } A. w  e.  { I }  ( ( ( r ( .s `  M ) w )  e.  { I }  /\  ( r ( .s
`  M ) ( w ( +g  `  M
) x ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) x ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) w )  =  ( q ( .s `  M
) ( r ( .s `  M ) w ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w ) )  <->  A. w  e.  { I }  (
( ( r ( .s `  M ) w )  e.  {
I }  /\  (
r ( .s `  M ) ( w ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) w )  =  ( q ( .s `  M
) ( r ( .s `  M ) w ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w ) ) ) )
67 oveq2 6658 . . . . . . . . . 10  |-  ( w  =  I  ->  (
r ( .s `  M ) w )  =  ( r ( .s `  M ) I ) )
6867eleq1d 2686 . . . . . . . . 9  |-  ( w  =  I  ->  (
( r ( .s
`  M ) w )  e.  { I } 
<->  ( r ( .s
`  M ) I )  e.  { I } ) )
69 oveq1 6657 . . . . . . . . . . 11  |-  ( w  =  I  ->  (
w ( +g  `  M
) I )  =  ( I ( +g  `  M ) I ) )
7069oveq2d 6666 . . . . . . . . . 10  |-  ( w  =  I  ->  (
r ( .s `  M ) ( w ( +g  `  M
) I ) )  =  ( r ( .s `  M ) ( I ( +g  `  M ) I ) ) )
7167oveq1d 6665 . . . . . . . . . 10  |-  ( w  =  I  ->  (
( r ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) I ) )  =  ( ( r ( .s `  M ) I ) ( +g  `  M ) ( r ( .s `  M
) I ) ) )
7270, 71eqeq12d 2637 . . . . . . . . 9  |-  ( w  =  I  ->  (
( r ( .s
`  M ) ( w ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  <->  ( r
( .s `  M
) ( I ( +g  `  M ) I ) )  =  ( ( r ( .s `  M ) I ) ( +g  `  M ) ( r ( .s `  M
) I ) ) ) )
73 oveq2 6658 . . . . . . . . . 10  |-  ( w  =  I  ->  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) I ) )
74 oveq2 6658 . . . . . . . . . . 11  |-  ( w  =  I  ->  (
q ( .s `  M ) w )  =  ( q ( .s `  M ) I ) )
7574, 67oveq12d 6668 . . . . . . . . . 10  |-  ( w  =  I  ->  (
( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) )  =  ( ( q ( .s `  M ) I ) ( +g  `  M ) ( r ( .s `  M
) I ) ) )
7673, 75eqeq12d 2637 . . . . . . . . 9  |-  ( w  =  I  ->  (
( ( q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) w )  =  ( ( q ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) w ) )  <->  ( (
q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( ( q ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) ) ) )
7768, 72, 763anbi123d 1399 . . . . . . . 8  |-  ( w  =  I  ->  (
( ( r ( .s `  M ) w )  e.  {
I }  /\  (
r ( .s `  M ) ( w ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  <-> 
( ( r ( .s `  M ) I )  e.  {
I }  /\  (
r ( .s `  M ) ( I ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) I )  =  ( ( q ( .s
`  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) ) ) ) )
78 oveq2 6658 . . . . . . . . . 10  |-  ( w  =  I  ->  (
( q ( .r
`  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .r
`  (Scalar `  M )
) r ) ( .s `  M ) I ) )
7967oveq2d 6666 . . . . . . . . . 10  |-  ( w  =  I  ->  (
q ( .s `  M ) ( r ( .s `  M
) w ) )  =  ( q ( .s `  M ) ( r ( .s
`  M ) I ) ) )
8078, 79eqeq12d 2637 . . . . . . . . 9  |-  ( w  =  I  ->  (
( ( q ( .r `  (Scalar `  M ) ) r ) ( .s `  M ) w )  =  ( q ( .s `  M ) ( r ( .s
`  M ) w ) )  <->  ( (
q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) I )  =  ( q ( .s `  M
) ( r ( .s `  M ) I ) ) ) )
81 oveq2 6658 . . . . . . . . . 10  |-  ( w  =  I  ->  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) w )  =  ( ( 1r `  (Scalar `  M ) ) ( .s `  M ) I ) )
82 id 22 . . . . . . . . . 10  |-  ( w  =  I  ->  w  =  I )
8381, 82eqeq12d 2637 . . . . . . . . 9  |-  ( w  =  I  ->  (
( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w  <->  ( ( 1r
`  (Scalar `  M )
) ( .s `  M ) I )  =  I ) )
8480, 83anbi12d 747 . . . . . . . 8  |-  ( w  =  I  ->  (
( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s `  M ) w )  =  ( q ( .s `  M ) ( r ( .s
`  M ) w ) )  /\  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) w )  =  w )  <->  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) I )  =  ( q ( .s `  M
) ( r ( .s `  M ) I ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) I )  =  I ) ) )
8577, 84anbi12d 747 . . . . . . 7  |-  ( w  =  I  ->  (
( ( ( r ( .s `  M
) w )  e. 
{ I }  /\  ( r ( .s
`  M ) ( w ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) w )  =  ( q ( .s `  M
) ( r ( .s `  M ) w ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w ) )  <->  ( (
( r ( .s
`  M ) I )  e.  { I }  /\  ( r ( .s `  M ) ( I ( +g  `  M ) I ) )  =  ( ( r ( .s `  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) )  /\  ( ( q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( ( q ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( q ( .s `  M ) ( r ( .s
`  M ) I ) )  /\  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) I )  =  I ) ) ) )
8685ralsng 4218 . . . . . 6  |-  ( I  e.  V  ->  ( A. w  e.  { I }  ( ( ( r ( .s `  M ) w )  e.  { I }  /\  ( r ( .s
`  M ) ( w ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) w )  =  ( q ( .s `  M
) ( r ( .s `  M ) w ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w ) )  <->  ( (
( r ( .s
`  M ) I )  e.  { I }  /\  ( r ( .s `  M ) ( I ( +g  `  M ) I ) )  =  ( ( r ( .s `  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) )  /\  ( ( q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( ( q ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( q ( .s `  M ) ( r ( .s
`  M ) I ) )  /\  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) I )  =  I ) ) ) )
8786adantr 481 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( A. w  e. 
{ I }  (
( ( r ( .s `  M ) w )  e.  {
I }  /\  (
r ( .s `  M ) ( w ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) w )  =  ( q ( .s `  M
) ( r ( .s `  M ) w ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w ) )  <->  ( (
( r ( .s
`  M ) I )  e.  { I }  /\  ( r ( .s `  M ) ( I ( +g  `  M ) I ) )  =  ( ( r ( .s `  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) )  /\  ( ( q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( ( q ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( q ( .s `  M ) ( r ( .s
`  M ) I ) )  /\  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) I )  =  I ) ) ) )
8866, 87bitrd 268 . . . 4  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( A. x  e. 
{ I } A. w  e.  { I }  ( ( ( r ( .s `  M ) w )  e.  { I }  /\  ( r ( .s
`  M ) ( w ( +g  `  M
) x ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) x ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) w )  =  ( q ( .s `  M
) ( r ( .s `  M ) w ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w ) )  <->  ( (
( r ( .s
`  M ) I )  e.  { I }  /\  ( r ( .s `  M ) ( I ( +g  `  M ) I ) )  =  ( ( r ( .s `  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) )  /\  ( ( q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( ( q ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s `  M ) I )  =  ( q ( .s `  M ) ( r ( .s
`  M ) I ) )  /\  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) I )  =  I ) ) ) )
89882ralbidv 2989 . . 3  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( A. q  e.  ( Base `  (Scalar `  M ) ) A. r  e.  ( Base `  (Scalar `  M )
) A. x  e. 
{ I } A. w  e.  { I }  ( ( ( r ( .s `  M ) w )  e.  { I }  /\  ( r ( .s
`  M ) ( w ( +g  `  M
) x ) )  =  ( ( r ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) x ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) w )  =  ( ( q ( .s
`  M ) w ) ( +g  `  M
) ( r ( .s `  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) w )  =  ( q ( .s `  M
) ( r ( .s `  M ) w ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) w )  =  w ) )  <->  A. q  e.  ( Base `  (Scalar `  M ) ) A. r  e.  ( Base `  (Scalar `  M )
) ( ( ( r ( .s `  M ) I )  e.  { I }  /\  ( r ( .s
`  M ) ( I ( +g  `  M
) I ) )  =  ( ( r ( .s `  M
) I ) ( +g  `  M ) ( r ( .s
`  M ) I ) )  /\  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) I )  =  ( ( q ( .s
`  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s
`  M ) I )  =  ( q ( .s `  M
) ( r ( .s `  M ) I ) )  /\  ( ( 1r `  (Scalar `  M ) ) ( .s `  M
) I )  =  I ) ) ) )
9056, 89mpbird 247 . 2  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  A. q  e.  ( Base `  (Scalar `  M
) ) A. r  e.  ( Base `  (Scalar `  M ) ) A. x  e.  { I } A. w  e.  {
I }  ( ( ( r ( .s
`  M ) w )  e.  { I }  /\  ( r ( .s `  M ) ( w ( +g  `  M ) x ) )  =  ( ( r ( .s `  M ) w ) ( +g  `  M
) ( r ( .s `  M ) x ) )  /\  ( ( q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) w )  =  ( ( q ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s `  M ) w )  =  ( q ( .s `  M ) ( r ( .s
`  M ) w ) )  /\  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) w )  =  w ) ) )
914lmodbase 16018 . . . 4  |-  ( { I }  e.  _V  ->  { I }  =  ( Base `  M )
)
925, 91ax-mp 5 . . 3  |-  { I }  =  ( Base `  M )
93 eqid 2622 . . 3  |-  ( +g  `  M )  =  ( +g  `  M )
94 eqid 2622 . . 3  |-  ( .s
`  M )  =  ( .s `  M
)
95 eqid 2622 . . 3  |-  (Scalar `  M )  =  (Scalar `  M )
96 eqid 2622 . . 3  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
97 eqid 2622 . . 3  |-  ( +g  `  (Scalar `  M )
)  =  ( +g  `  (Scalar `  M )
)
98 eqid 2622 . . 3  |-  ( .r
`  (Scalar `  M )
)  =  ( .r
`  (Scalar `  M )
)
99 eqid 2622 . . 3  |-  ( 1r
`  (Scalar `  M )
)  =  ( 1r
`  (Scalar `  M )
)
10092, 93, 94, 95, 96, 97, 98, 99islmod 18867 . 2  |-  ( M  e.  LMod  <->  ( M  e. 
Grp  /\  (Scalar `  M
)  e.  Ring  /\  A. q  e.  ( Base `  (Scalar `  M )
) A. r  e.  ( Base `  (Scalar `  M ) ) A. x  e.  { I } A. w  e.  {
I }  ( ( ( r ( .s
`  M ) w )  e.  { I }  /\  ( r ( .s `  M ) ( w ( +g  `  M ) x ) )  =  ( ( r ( .s `  M ) w ) ( +g  `  M
) ( r ( .s `  M ) x ) )  /\  ( ( q ( +g  `  (Scalar `  M ) ) r ) ( .s `  M ) w )  =  ( ( q ( .s `  M
) w ) ( +g  `  M ) ( r ( .s
`  M ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  M ) ) r ) ( .s `  M ) w )  =  ( q ( .s `  M ) ( r ( .s
`  M ) w ) )  /\  (
( 1r `  (Scalar `  M ) ) ( .s `  M ) w )  =  w ) ) ) )
10130, 35, 90, 100syl3anbrc 1246 1  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  M  e.  LMod )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572   {csn 4177   {cpr 4179   {ctp 4181   <.cop 4183   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   ndxcnx 15854   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   Grpcgrp 17422   1rcur 18501   Ringcrg 18547   LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865
This theorem is referenced by:  lmod1zr  42282
  Copyright terms: Public domain W3C validator