Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1lem3 Structured version   Visualization version   Unicode version

Theorem lmod1lem3 42278
Description: Lemma 3 for lmod1 42281. (Contributed by AV, 29-Apr-2019.)
Hypothesis
Ref Expression
lmod1.m  |-  M  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  y  e.  { I }  |->  y ) >. } )
Assertion
Ref Expression
lmod1lem3  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) I )  =  ( ( q ( .s
`  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) ) )
Distinct variable groups:    I, r, x, y    R, r, x, y    V, r, x, y   
I, q    R, q    V, q    x, M, y   
x, q, y
Allowed substitution hints:    M( r, q)

Proof of Theorem lmod1lem3
StepHypRef Expression
1 eqidd 2623 . . 3  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
x  e.  ( Base `  R ) ,  y  e.  { I }  |->  y )  =  ( x  e.  ( Base `  R ) ,  y  e.  { I }  |->  y ) )
2 simprr 796 . . 3  |-  ( ( ( ( I  e.  V  /\  R  e. 
Ring )  /\  (
q  e.  ( Base `  R )  /\  r  e.  ( Base `  R
) ) )  /\  ( x  =  (
q ( +g  `  (Scalar `  M ) ) r )  /\  y  =  I ) )  -> 
y  =  I )
3 simplr 792 . . . . . . 7  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  R  e.  Ring )
4 lmod1.m . . . . . . . . 9  |-  M  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  y  e.  { I }  |->  y ) >. } )
54lmodsca 16020 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  =  (Scalar `  M )
)
65fveq2d 6195 . . . . . . 7  |-  ( R  e.  Ring  ->  ( +g  `  R )  =  ( +g  `  (Scalar `  M ) ) )
73, 6syl 17 . . . . . 6  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  ( +g  `  R )  =  ( +g  `  (Scalar `  M ) ) )
87eqcomd 2628 . . . . 5  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  ( +g  `  (Scalar `  M
) )  =  ( +g  `  R ) )
98oveqd 6667 . . . 4  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
q ( +g  `  (Scalar `  M ) ) r )  =  ( q ( +g  `  R
) r ) )
10 simprl 794 . . . . 5  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  q  e.  ( Base `  R
) )
11 simprr 796 . . . . 5  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  r  e.  ( Base `  R
) )
12 eqid 2622 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
13 eqid 2622 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
1412, 13ringacl 18578 . . . . 5  |-  ( ( R  e.  Ring  /\  q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
)  ->  ( q
( +g  `  R ) r )  e.  (
Base `  R )
)
153, 10, 11, 14syl3anc 1326 . . . 4  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
q ( +g  `  R
) r )  e.  ( Base `  R
) )
169, 15eqeltrd 2701 . . 3  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
q ( +g  `  (Scalar `  M ) ) r )  e.  ( Base `  R ) )
17 snidg 4206 . . . . 5  |-  ( I  e.  V  ->  I  e.  { I } )
1817adantr 481 . . . 4  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  I  e.  { I } )
1918adantr 481 . . 3  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  I  e.  { I } )
20 simpl 473 . . . 4  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  I  e.  V )
2120adantr 481 . . 3  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  I  e.  V )
221, 2, 16, 19, 21ovmpt2d 6788 . 2  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
( q ( +g  `  (Scalar `  M )
) r ) ( x  e.  ( Base `  R ) ,  y  e.  { I }  |->  y ) I )  =  I )
23 fvex 6201 . . . . . . 7  |-  ( Base `  R )  e.  _V
24 snex 4908 . . . . . . 7  |-  { I }  e.  _V
2523, 24pm3.2i 471 . . . . . 6  |-  ( (
Base `  R )  e.  _V  /\  { I }  e.  _V )
26 mpt2exga 7246 . . . . . 6  |-  ( ( ( Base `  R
)  e.  _V  /\  { I }  e.  _V )  ->  ( x  e.  ( Base `  R
) ,  y  e. 
{ I }  |->  y )  e.  _V )
2725, 26mp1i 13 . . . . 5  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
x  e.  ( Base `  R ) ,  y  e.  { I }  |->  y )  e.  _V )
284lmodvsca 16021 . . . . 5  |-  ( ( x  e.  ( Base `  R ) ,  y  e.  { I }  |->  y )  e.  _V  ->  ( x  e.  (
Base `  R ) ,  y  e.  { I }  |->  y )  =  ( .s `  M
) )
2927, 28syl 17 . . . 4  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
x  e.  ( Base `  R ) ,  y  e.  { I }  |->  y )  =  ( .s `  M ) )
3029eqcomd 2628 . . 3  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  ( .s `  M )  =  ( x  e.  (
Base `  R ) ,  y  e.  { I }  |->  y ) )
3130oveqd 6667 . 2  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) I )  =  ( ( q ( +g  `  (Scalar `  M )
) r ) ( x  e.  ( Base `  R ) ,  y  e.  { I }  |->  y ) I ) )
32 simprr 796 . . . . 5  |-  ( ( ( ( I  e.  V  /\  R  e. 
Ring )  /\  (
q  e.  ( Base `  R )  /\  r  e.  ( Base `  R
) ) )  /\  ( x  =  q  /\  y  =  I
) )  ->  y  =  I )
3330, 32, 10, 19, 19ovmpt2d 6788 . . . 4  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
q ( .s `  M ) I )  =  I )
34 simprr 796 . . . . 5  |-  ( ( ( ( I  e.  V  /\  R  e. 
Ring )  /\  (
q  e.  ( Base `  R )  /\  r  e.  ( Base `  R
) ) )  /\  ( x  =  r  /\  y  =  I
) )  ->  y  =  I )
3530, 34, 11, 19, 19ovmpt2d 6788 . . . 4  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
r ( .s `  M ) I )  =  I )
3633, 35oveq12d 6668 . . 3  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
( q ( .s
`  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) )  =  ( I ( +g  `  M ) I ) )
37 snex 4908 . . . . . 6  |-  { <. <.
I ,  I >. ,  I >. }  e.  _V
384lmodplusg 16019 . . . . . 6  |-  ( {
<. <. I ,  I >. ,  I >. }  e.  _V  ->  { <. <. I ,  I >. ,  I >. }  =  ( +g  `  M
) )
3937, 38mp1i 13 . . . . 5  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  { <. <.
I ,  I >. ,  I >. }  =  ( +g  `  M ) )
4039eqcomd 2628 . . . 4  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  ( +g  `  M )  =  { <. <. I ,  I >. ,  I >. } )
4140oveqd 6667 . . 3  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
I ( +g  `  M
) I )  =  ( I { <. <.
I ,  I >. ,  I >. } I ) )
42 df-ov 6653 . . . 4  |-  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( {
<. <. I ,  I >. ,  I >. } `  <. I ,  I >. )
43 opex 4932 . . . . . . 7  |-  <. I ,  I >.  e.  _V
4420, 43jctil 560 . . . . . 6  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( <. I ,  I >.  e.  _V  /\  I  e.  V ) )
4544adantr 481 . . . . 5  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  ( <. I ,  I >.  e. 
_V  /\  I  e.  V ) )
46 fvsng 6447 . . . . 5  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
4745, 46syl 17 . . . 4  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
4842, 47syl5eq 2668 . . 3  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
I { <. <. I ,  I >. ,  I >. } I )  =  I )
4936, 41, 483eqtrd 2660 . 2  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
( q ( .s
`  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) )  =  I )
5022, 31, 493eqtr4d 2666 1  |-  ( ( ( I  e.  V  /\  R  e.  Ring )  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
( q ( +g  `  (Scalar `  M )
) r ) ( .s `  M ) I )  =  ( ( q ( .s
`  M ) I ) ( +g  `  M
) ( r ( .s `  M ) I ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   {csn 4177   {ctp 4181   <.cop 4183   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   ndxcnx 15854   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   Ringcrg 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-sca 15957  df-vsca 15958  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ring 18549
This theorem is referenced by:  lmod1  42281
  Copyright terms: Public domain W3C validator