MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lswco Structured version   Visualization version   Unicode version

Theorem lswco 13584
Description: Mapping of (nonempty) words commutes with the "last symbol" operation. This theorem would not hold if 
W  =  (/),  ( F `
 (/) )  =/=  (/) and  (/)  e.  A, because then  ( lastS  `  ( F  o.  W
) )  =  ( lastS  `  (/) )  =  (/)  =/=  ( F `  (/) )  =  ( F ( lastS  `  W
) ). (Contributed by AV, 11-Nov-2018.)
Assertion
Ref Expression
lswco  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  ( lastS  `  ( F  o.  W
) )  =  ( F `  ( lastS  `  W
) ) )

Proof of Theorem lswco
StepHypRef Expression
1 ffun 6048 . . . . . 6  |-  ( F : A --> B  ->  Fun  F )
21anim1i 592 . . . . 5  |-  ( ( F : A --> B  /\  W  e. Word  A )  ->  ( Fun  F  /\  W  e. Word  A )
)
32ancoms 469 . . . 4  |-  ( ( W  e. Word  A  /\  F : A --> B )  ->  ( Fun  F  /\  W  e. Word  A ) )
433adant2 1080 . . 3  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  ( Fun  F  /\  W  e. Word  A ) )
5 cofunexg 7130 . . 3  |-  ( ( Fun  F  /\  W  e. Word  A )  ->  ( F  o.  W )  e.  _V )
6 lsw 13351 . . 3  |-  ( ( F  o.  W )  e.  _V  ->  ( lastS  `  ( F  o.  W
) )  =  ( ( F  o.  W
) `  ( ( # `
 ( F  o.  W ) )  - 
1 ) ) )
74, 5, 63syl 18 . 2  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  ( lastS  `  ( F  o.  W
) )  =  ( ( F  o.  W
) `  ( ( # `
 ( F  o.  W ) )  - 
1 ) ) )
8 lenco 13578 . . . . 5  |-  ( ( W  e. Word  A  /\  F : A --> B )  ->  ( # `  ( F  o.  W )
)  =  ( # `  W ) )
983adant2 1080 . . . 4  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  ( # `
 ( F  o.  W ) )  =  ( # `  W
) )
109oveq1d 6665 . . 3  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  (
( # `  ( F  o.  W ) )  -  1 )  =  ( ( # `  W
)  -  1 ) )
1110fveq2d 6195 . 2  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  (
( F  o.  W
) `  ( ( # `
 ( F  o.  W ) )  - 
1 ) )  =  ( ( F  o.  W ) `  (
( # `  W )  -  1 ) ) )
12 wrdf 13310 . . . . . . 7  |-  ( W  e. Word  A  ->  W : ( 0..^ (
# `  W )
) --> A )
1312adantr 481 . . . . . 6  |-  ( ( W  e. Word  A  /\  W  =/=  (/) )  ->  W : ( 0..^ (
# `  W )
) --> A )
14 lennncl 13325 . . . . . . 7  |-  ( ( W  e. Word  A  /\  W  =/=  (/) )  ->  ( # `
 W )  e.  NN )
15 fzo0end 12560 . . . . . . 7  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  ( 0..^ ( # `  W
) ) )
1614, 15syl 17 . . . . . 6  |-  ( ( W  e. Word  A  /\  W  =/=  (/) )  ->  (
( # `  W )  -  1 )  e.  ( 0..^ ( # `  W ) ) )
1713, 16jca 554 . . . . 5  |-  ( ( W  e. Word  A  /\  W  =/=  (/) )  ->  ( W : ( 0..^ (
# `  W )
) --> A  /\  (
( # `  W )  -  1 )  e.  ( 0..^ ( # `  W ) ) ) )
18173adant3 1081 . . . 4  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  ( W : ( 0..^ (
# `  W )
) --> A  /\  (
( # `  W )  -  1 )  e.  ( 0..^ ( # `  W ) ) ) )
19 fvco3 6275 . . . 4  |-  ( ( W : ( 0..^ ( # `  W
) ) --> A  /\  ( ( # `  W
)  -  1 )  e.  ( 0..^ (
# `  W )
) )  ->  (
( F  o.  W
) `  ( ( # `
 W )  - 
1 ) )  =  ( F `  ( W `  ( ( # `
 W )  - 
1 ) ) ) )
2018, 19syl 17 . . 3  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  (
( F  o.  W
) `  ( ( # `
 W )  - 
1 ) )  =  ( F `  ( W `  ( ( # `
 W )  - 
1 ) ) ) )
21 lsw 13351 . . . . . 6  |-  ( W  e. Word  A  ->  ( lastS  `  W )  =  ( W `  ( (
# `  W )  -  1 ) ) )
22213ad2ant1 1082 . . . . 5  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  ( lastS  `  W )  =  ( W `  ( (
# `  W )  -  1 ) ) )
2322eqcomd 2628 . . . 4  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  ( W `  ( ( # `
 W )  - 
1 ) )  =  ( lastS  `  W )
)
2423fveq2d 6195 . . 3  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  ( F `  ( W `  ( ( # `  W
)  -  1 ) ) )  =  ( F `  ( lastS  `  W
) ) )
2520, 24eqtrd 2656 . 2  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  (
( F  o.  W
) `  ( ( # `
 W )  - 
1 ) )  =  ( F `  ( lastS  `  W ) ) )
267, 11, 253eqtrd 2660 1  |-  ( ( W  e. Word  A  /\  W  =/=  (/)  /\  F : A
--> B )  ->  ( lastS  `  ( F  o.  W
) )  =  ( F `  ( lastS  `  W
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator