| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapfzcons | Structured version Visualization version Unicode version | ||
| Description: Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| Ref | Expression |
|---|---|
| mapfzcons.1 |
|
| Ref | Expression |
|---|---|
| mapfzcons |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1062 |
. . . . . 6
| |
| 2 | elmapex 7878 |
. . . . . . . . 9
| |
| 3 | 2 | simpld 475 |
. . . . . . . 8
|
| 4 | 3 | 3ad2ant2 1083 |
. . . . . . 7
|
| 5 | ovex 6678 |
. . . . . . 7
| |
| 6 | elmapg 7870 |
. . . . . . 7
| |
| 7 | 4, 5, 6 | sylancl 694 |
. . . . . 6
|
| 8 | 1, 7 | mpbid 222 |
. . . . 5
|
| 9 | ovex 6678 |
. . . . . . . 8
| |
| 10 | simp3 1063 |
. . . . . . . 8
| |
| 11 | f1osng 6177 |
. . . . . . . 8
| |
| 12 | 9, 10, 11 | sylancr 695 |
. . . . . . 7
|
| 13 | f1of 6137 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 17 |
. . . . . 6
|
| 15 | snssi 4339 |
. . . . . . 7
| |
| 16 | 15 | 3ad2ant3 1084 |
. . . . . 6
|
| 17 | 14, 16 | fssd 6057 |
. . . . 5
|
| 18 | fzp1disj 12399 |
. . . . . 6
| |
| 19 | 18 | a1i 11 |
. . . . 5
|
| 20 | fun 6066 |
. . . . 5
| |
| 21 | 8, 17, 19, 20 | syl21anc 1325 |
. . . 4
|
| 22 | 1z 11407 |
. . . . . . 7
| |
| 23 | simp1 1061 |
. . . . . . . 8
| |
| 24 | nn0uz 11722 |
. . . . . . . . 9
| |
| 25 | 1m1e0 11089 |
. . . . . . . . . 10
| |
| 26 | 25 | fveq2i 6194 |
. . . . . . . . 9
|
| 27 | 24, 26 | eqtr4i 2647 |
. . . . . . . 8
|
| 28 | 23, 27 | syl6eleq 2711 |
. . . . . . 7
|
| 29 | fzsuc2 12398 |
. . . . . . 7
| |
| 30 | 22, 28, 29 | sylancr 695 |
. . . . . 6
|
| 31 | 30 | eqcomd 2628 |
. . . . 5
|
| 32 | unidm 3756 |
. . . . . 6
| |
| 33 | 32 | a1i 11 |
. . . . 5
|
| 34 | 31, 33 | feq23d 6040 |
. . . 4
|
| 35 | 21, 34 | mpbid 222 |
. . 3
|
| 36 | ovex 6678 |
. . . 4
| |
| 37 | elmapg 7870 |
. . . 4
| |
| 38 | 4, 36, 37 | sylancl 694 |
. . 3
|
| 39 | 35, 38 | mpbird 247 |
. 2
|
| 40 | mapfzcons.1 |
. . . . 5
| |
| 41 | 40 | opeq1i 4405 |
. . . 4
|
| 42 | 41 | sneqi 4188 |
. . 3
|
| 43 | 42 | uneq2i 3764 |
. 2
|
| 44 | 40 | oveq2i 6661 |
. . 3
|
| 45 | 44 | oveq2i 6661 |
. 2
|
| 46 | 39, 43, 45 | 3eltr4g 2718 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 |
| This theorem is referenced by: rexrabdioph 37358 |
| Copyright terms: Public domain | W3C validator |