MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscn Structured version   Visualization version   Unicode version

Theorem metdscn 22659
Description: The function  F which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
metdscn.j  |-  J  =  ( MetOpen `  D )
metdscn.c  |-  C  =  ( dist `  RR*s
)
metdscn.k  |-  K  =  ( MetOpen `  C )
Assertion
Ref Expression
metdscn  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F  e.  ( J  Cn  K
) )
Distinct variable groups:    x, y, D    y, J    x, S, y    x, X, y
Allowed substitution hints:    C( x, y)    F( x, y)    J( x)    K( x, y)

Proof of Theorem metdscn
Dummy variables  w  r  z  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metdscn.f . . . 4  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
21metdsf 22651 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,] +oo ) )
3 iccssxr 12256 . . 3  |-  ( 0 [,] +oo )  C_  RR*
4 fss 6056 . . 3  |-  ( ( F : X --> ( 0 [,] +oo )  /\  ( 0 [,] +oo )  C_  RR* )  ->  F : X --> RR* )
52, 3, 4sylancl 694 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F : X
--> RR* )
6 simprr 796 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
r  e.  RR+ )
75ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  ->  F : X --> RR* )
8 simplrl 800 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  -> 
z  e.  X )
97, 8ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  -> 
( F `  z
)  e.  RR* )
10 simprl 794 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  ->  w  e.  X )
117, 10ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  -> 
( F `  w
)  e.  RR* )
12 metdscn.c . . . . . . . . 9  |-  C  =  ( dist `  RR*s
)
1312xrsdsval 19790 . . . . . . . 8  |-  ( ( ( F `  z
)  e.  RR*  /\  ( F `  w )  e.  RR* )  ->  (
( F `  z
) C ( F `
 w ) )  =  if ( ( F `  z )  <_  ( F `  w ) ,  ( ( F `  w
) +e  -e ( F `  z ) ) ,  ( ( F `  z ) +e  -e ( F `  w ) ) ) )
149, 11, 13syl2anc 693 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  -> 
( ( F `  z ) C ( F `  w ) )  =  if ( ( F `  z
)  <_  ( F `  w ) ,  ( ( F `  w
) +e  -e ( F `  z ) ) ,  ( ( F `  z ) +e  -e ( F `  w ) ) ) )
15 metdscn.j . . . . . . . . 9  |-  J  =  ( MetOpen `  D )
16 metdscn.k . . . . . . . . 9  |-  K  =  ( MetOpen `  C )
17 simplll 798 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  ->  D  e.  ( *Met `  X ) )
18 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  ->  S  C_  X )
19 simplrr 801 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  -> 
r  e.  RR+ )
20 xmetsym 22152 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  w  e.  X  /\  z  e.  X
)  ->  ( w D z )  =  ( z D w ) )
2117, 10, 8, 20syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  -> 
( w D z )  =  ( z D w ) )
22 simprr 796 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  -> 
( z D w )  <  r )
2321, 22eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  -> 
( w D z )  <  r )
241, 15, 12, 16, 17, 18, 10, 8, 19, 23metdscnlem 22658 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  -> 
( ( F `  w ) +e  -e ( F `  z ) )  < 
r )
251, 15, 12, 16, 17, 18, 8, 10, 19, 22metdscnlem 22658 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  -> 
( ( F `  z ) +e  -e ( F `  w ) )  < 
r )
26 breq1 4656 . . . . . . . . 9  |-  ( ( ( F `  w
) +e  -e ( F `  z ) )  =  if ( ( F `
 z )  <_ 
( F `  w
) ,  ( ( F `  w ) +e  -e
( F `  z
) ) ,  ( ( F `  z
) +e  -e ( F `  w ) ) )  ->  ( ( ( F `  w ) +e  -e
( F `  z
) )  <  r  <->  if ( ( F `  z )  <_  ( F `  w ) ,  ( ( F `
 w ) +e  -e ( F `  z ) ) ,  ( ( F `  z ) +e  -e
( F `  w
) ) )  < 
r ) )
27 breq1 4656 . . . . . . . . 9  |-  ( ( ( F `  z
) +e  -e ( F `  w ) )  =  if ( ( F `
 z )  <_ 
( F `  w
) ,  ( ( F `  w ) +e  -e
( F `  z
) ) ,  ( ( F `  z
) +e  -e ( F `  w ) ) )  ->  ( ( ( F `  z ) +e  -e
( F `  w
) )  <  r  <->  if ( ( F `  z )  <_  ( F `  w ) ,  ( ( F `
 w ) +e  -e ( F `  z ) ) ,  ( ( F `  z ) +e  -e
( F `  w
) ) )  < 
r ) )
2826, 27ifboth 4124 . . . . . . . 8  |-  ( ( ( ( F `  w ) +e  -e ( F `  z ) )  < 
r  /\  ( ( F `  z ) +e  -e ( F `  w ) )  <  r )  ->  if ( ( F `  z )  <_  ( F `  w ) ,  ( ( F `  w
) +e  -e ( F `  z ) ) ,  ( ( F `  z ) +e  -e ( F `  w ) ) )  <  r )
2924, 25, 28syl2anc 693 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  ->  if ( ( F `  z )  <_  ( F `  w ) ,  ( ( F `
 w ) +e  -e ( F `  z ) ) ,  ( ( F `  z ) +e  -e
( F `  w
) ) )  < 
r )
3014, 29eqbrtrd 4675 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  ( w  e.  X  /\  ( z D w )  < 
r ) )  -> 
( ( F `  z ) C ( F `  w ) )  <  r )
3130expr 643 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  (
z  e.  X  /\  r  e.  RR+ ) )  /\  w  e.  X
)  ->  ( (
z D w )  <  r  ->  (
( F `  z
) C ( F `
 w ) )  <  r ) )
3231ralrimiva 2966 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  A. w  e.  X  ( ( z D w )  <  r  ->  ( ( F `  z ) C ( F `  w ) )  <  r ) )
33 breq2 4657 . . . . . . 7  |-  ( s  =  r  ->  (
( z D w )  <  s  <->  ( z D w )  < 
r ) )
3433imbi1d 331 . . . . . 6  |-  ( s  =  r  ->  (
( ( z D w )  <  s  ->  ( ( F `  z ) C ( F `  w ) )  <  r )  <-> 
( ( z D w )  <  r  ->  ( ( F `  z ) C ( F `  w ) )  <  r ) ) )
3534ralbidv 2986 . . . . 5  |-  ( s  =  r  ->  ( A. w  e.  X  ( ( z D w )  <  s  ->  ( ( F `  z ) C ( F `  w ) )  <  r )  <->  A. w  e.  X  ( ( z D w )  <  r  ->  ( ( F `  z ) C ( F `  w ) )  <  r ) ) )
3635rspcev 3309 . . . 4  |-  ( ( r  e.  RR+  /\  A. w  e.  X  (
( z D w )  <  r  -> 
( ( F `  z ) C ( F `  w ) )  <  r ) )  ->  E. s  e.  RR+  A. w  e.  X  ( ( z D w )  < 
s  ->  ( ( F `  z ) C ( F `  w ) )  < 
r ) )
376, 32, 36syl2anc 693 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  A. w  e.  X  ( (
z D w )  <  s  ->  (
( F `  z
) C ( F `
 w ) )  <  r ) )
3837ralrimivva 2971 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  A. w  e.  X  ( ( z D w )  <  s  ->  ( ( F `  z ) C ( F `  w ) )  <  r ) )
39 simpl 473 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  D  e.  ( *Met `  X
) )
4012xrsxmet 22612 . . 3  |-  C  e.  ( *Met `  RR* )
4115, 16metcn 22348 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  C  e.  ( *Met `  RR* )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> RR*  /\  A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  A. w  e.  X  ( ( z D w )  <  s  ->  ( ( F `  z ) C ( F `  w ) )  <  r ) ) ) )
4239, 40, 41sylancl 694 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> RR*  /\  A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  A. w  e.  X  ( ( z D w )  <  s  ->  ( ( F `  z ) C ( F `  w ) )  <  r ) ) ) )
435, 38, 42mpbir2and 957 1  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F  e.  ( J  Cn  K
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   RR+crp 11832    -ecxne 11943   +ecxad 11944   [,]cicc 12178   distcds 15950   RR*scxrs 16160   *Metcxmt 19731   MetOpencmopn 19736    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-topgen 16104  df-xrs 16162  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cnp 21032
This theorem is referenced by:  metdscn2  22660
  Copyright terms: Public domain W3C validator