Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulc1cncfg Structured version   Visualization version   Unicode version

Theorem mulc1cncfg 39821
Description: A version of mulc1cncf 22708 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
mulc1cncfg.1  |-  F/_ x F
mulc1cncfg.2  |-  F/ x ph
mulc1cncfg.3  |-  ( ph  ->  F  e.  ( A
-cn-> CC ) )
mulc1cncfg.4  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
mulc1cncfg  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  ( F `  x )
) )  e.  ( A -cn-> CC ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem mulc1cncfg
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 mulc1cncfg.4 . . . . . 6  |-  ( ph  ->  B  e.  CC )
2 eqid 2622 . . . . . . 7  |-  ( x  e.  CC  |->  ( B  x.  x ) )  =  ( x  e.  CC  |->  ( B  x.  x ) )
32mulc1cncf 22708 . . . . . 6  |-  ( B  e.  CC  ->  (
x  e.  CC  |->  ( B  x.  x ) )  e.  ( CC
-cn-> CC ) )
41, 3syl 17 . . . . 5  |-  ( ph  ->  ( x  e.  CC  |->  ( B  x.  x
) )  e.  ( CC -cn-> CC ) )
5 cncff 22696 . . . . 5  |-  ( ( x  e.  CC  |->  ( B  x.  x ) )  e.  ( CC
-cn-> CC )  ->  (
x  e.  CC  |->  ( B  x.  x ) ) : CC --> CC )
64, 5syl 17 . . . 4  |-  ( ph  ->  ( x  e.  CC  |->  ( B  x.  x
) ) : CC --> CC )
7 mulc1cncfg.3 . . . . 5  |-  ( ph  ->  F  e.  ( A
-cn-> CC ) )
8 cncff 22696 . . . . 5  |-  ( F  e.  ( A -cn-> CC )  ->  F : A
--> CC )
97, 8syl 17 . . . 4  |-  ( ph  ->  F : A --> CC )
10 fcompt 6400 . . . 4  |-  ( ( ( x  e.  CC  |->  ( B  x.  x
) ) : CC --> CC  /\  F : A --> CC )  ->  ( ( x  e.  CC  |->  ( B  x.  x ) )  o.  F )  =  ( t  e.  A  |->  ( ( x  e.  CC  |->  ( B  x.  x ) ) `
 ( F `  t ) ) ) )
116, 9, 10syl2anc 693 . . 3  |-  ( ph  ->  ( ( x  e.  CC  |->  ( B  x.  x ) )  o.  F )  =  ( t  e.  A  |->  ( ( x  e.  CC  |->  ( B  x.  x
) ) `  ( F `  t )
) ) )
129ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  t  e.  A )  ->  ( F `  t )  e.  CC )
131adantr 481 . . . . . . 7  |-  ( (
ph  /\  t  e.  A )  ->  B  e.  CC )
1413, 12mulcld 10060 . . . . . 6  |-  ( (
ph  /\  t  e.  A )  ->  ( B  x.  ( F `  t ) )  e.  CC )
15 mulc1cncfg.1 . . . . . . . 8  |-  F/_ x F
16 nfcv 2764 . . . . . . . 8  |-  F/_ x
t
1715, 16nffv 6198 . . . . . . 7  |-  F/_ x
( F `  t
)
18 nfcv 2764 . . . . . . . 8  |-  F/_ x B
19 nfcv 2764 . . . . . . . 8  |-  F/_ x  x.
2018, 19, 17nfov 6676 . . . . . . 7  |-  F/_ x
( B  x.  ( F `  t )
)
21 oveq2 6658 . . . . . . 7  |-  ( x  =  ( F `  t )  ->  ( B  x.  x )  =  ( B  x.  ( F `  t ) ) )
2217, 20, 21, 2fvmptf 6301 . . . . . 6  |-  ( ( ( F `  t
)  e.  CC  /\  ( B  x.  ( F `  t )
)  e.  CC )  ->  ( ( x  e.  CC  |->  ( B  x.  x ) ) `
 ( F `  t ) )  =  ( B  x.  ( F `  t )
) )
2312, 14, 22syl2anc 693 . . . . 5  |-  ( (
ph  /\  t  e.  A )  ->  (
( x  e.  CC  |->  ( B  x.  x
) ) `  ( F `  t )
)  =  ( B  x.  ( F `  t ) ) )
2423mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( t  e.  A  |->  ( ( x  e.  CC  |->  ( B  x.  x ) ) `  ( F `  t ) ) )  =  ( t  e.  A  |->  ( B  x.  ( F `
 t ) ) ) )
25 nfcv 2764 . . . . . 6  |-  F/_ t B
26 nfcv 2764 . . . . . 6  |-  F/_ t  x.
27 nfcv 2764 . . . . . 6  |-  F/_ t
( F `  x
)
2825, 26, 27nfov 6676 . . . . 5  |-  F/_ t
( B  x.  ( F `  x )
)
29 fveq2 6191 . . . . . 6  |-  ( t  =  x  ->  ( F `  t )  =  ( F `  x ) )
3029oveq2d 6666 . . . . 5  |-  ( t  =  x  ->  ( B  x.  ( F `  t ) )  =  ( B  x.  ( F `  x )
) )
3120, 28, 30cbvmpt 4749 . . . 4  |-  ( t  e.  A  |->  ( B  x.  ( F `  t ) ) )  =  ( x  e.  A  |->  ( B  x.  ( F `  x ) ) )
3224, 31syl6eq 2672 . . 3  |-  ( ph  ->  ( t  e.  A  |->  ( ( x  e.  CC  |->  ( B  x.  x ) ) `  ( F `  t ) ) )  =  ( x  e.  A  |->  ( B  x.  ( F `
 x ) ) ) )
3311, 32eqtrd 2656 . 2  |-  ( ph  ->  ( ( x  e.  CC  |->  ( B  x.  x ) )  o.  F )  =  ( x  e.  A  |->  ( B  x.  ( F `
 x ) ) ) )
347, 4cncfco 22710 . 2  |-  ( ph  ->  ( ( x  e.  CC  |->  ( B  x.  x ) )  o.  F )  e.  ( A -cn-> CC ) )
3533, 34eqeltrrd 2702 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  ( F `  x )
) )  e.  ( A -cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    |-> cmpt 4729    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934    x. cmul 9941   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-cncf 22681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator