| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulassnq | Structured version Visualization version Unicode version | ||
| Description: Multiplication of positive fractions is associative. (Contributed by NM, 1-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulassnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulasspi 9719 |
. . . . . . 7
| |
| 2 | mulasspi 9719 |
. . . . . . 7
| |
| 3 | 1, 2 | opeq12i 4407 |
. . . . . 6
|
| 4 | elpqn 9747 |
. . . . . . . . . 10
| |
| 5 | 4 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 6 | elpqn 9747 |
. . . . . . . . . 10
| |
| 7 | 6 | 3ad2ant2 1083 |
. . . . . . . . 9
|
| 8 | mulpipq2 9761 |
. . . . . . . . 9
| |
| 9 | 5, 7, 8 | syl2anc 693 |
. . . . . . . 8
|
| 10 | relxp 5227 |
. . . . . . . . 9
| |
| 11 | elpqn 9747 |
. . . . . . . . . 10
| |
| 12 | 11 | 3ad2ant3 1084 |
. . . . . . . . 9
|
| 13 | 1st2nd 7214 |
. . . . . . . . 9
| |
| 14 | 10, 12, 13 | sylancr 695 |
. . . . . . . 8
|
| 15 | 9, 14 | oveq12d 6668 |
. . . . . . 7
|
| 16 | xp1st 7198 |
. . . . . . . . . 10
| |
| 17 | 5, 16 | syl 17 |
. . . . . . . . 9
|
| 18 | xp1st 7198 |
. . . . . . . . . 10
| |
| 19 | 7, 18 | syl 17 |
. . . . . . . . 9
|
| 20 | mulclpi 9715 |
. . . . . . . . 9
| |
| 21 | 17, 19, 20 | syl2anc 693 |
. . . . . . . 8
|
| 22 | xp2nd 7199 |
. . . . . . . . . 10
| |
| 23 | 5, 22 | syl 17 |
. . . . . . . . 9
|
| 24 | xp2nd 7199 |
. . . . . . . . . 10
| |
| 25 | 7, 24 | syl 17 |
. . . . . . . . 9
|
| 26 | mulclpi 9715 |
. . . . . . . . 9
| |
| 27 | 23, 25, 26 | syl2anc 693 |
. . . . . . . 8
|
| 28 | xp1st 7198 |
. . . . . . . . 9
| |
| 29 | 12, 28 | syl 17 |
. . . . . . . 8
|
| 30 | xp2nd 7199 |
. . . . . . . . 9
| |
| 31 | 12, 30 | syl 17 |
. . . . . . . 8
|
| 32 | mulpipq 9762 |
. . . . . . . 8
| |
| 33 | 21, 27, 29, 31, 32 | syl22anc 1327 |
. . . . . . 7
|
| 34 | 15, 33 | eqtrd 2656 |
. . . . . 6
|
| 35 | 1st2nd 7214 |
. . . . . . . . 9
| |
| 36 | 10, 5, 35 | sylancr 695 |
. . . . . . . 8
|
| 37 | mulpipq2 9761 |
. . . . . . . . 9
| |
| 38 | 7, 12, 37 | syl2anc 693 |
. . . . . . . 8
|
| 39 | 36, 38 | oveq12d 6668 |
. . . . . . 7
|
| 40 | mulclpi 9715 |
. . . . . . . . 9
| |
| 41 | 19, 29, 40 | syl2anc 693 |
. . . . . . . 8
|
| 42 | mulclpi 9715 |
. . . . . . . . 9
| |
| 43 | 25, 31, 42 | syl2anc 693 |
. . . . . . . 8
|
| 44 | mulpipq 9762 |
. . . . . . . 8
| |
| 45 | 17, 23, 41, 43, 44 | syl22anc 1327 |
. . . . . . 7
|
| 46 | 39, 45 | eqtrd 2656 |
. . . . . 6
|
| 47 | 3, 34, 46 | 3eqtr4a 2682 |
. . . . 5
|
| 48 | 47 | fveq2d 6195 |
. . . 4
|
| 49 | mulerpq 9779 |
. . . 4
| |
| 50 | mulerpq 9779 |
. . . 4
| |
| 51 | 48, 49, 50 | 3eqtr4g 2681 |
. . 3
|
| 52 | mulpqnq 9763 |
. . . . 5
| |
| 53 | 52 | 3adant3 1081 |
. . . 4
|
| 54 | nqerid 9755 |
. . . . . 6
| |
| 55 | 54 | eqcomd 2628 |
. . . . 5
|
| 56 | 55 | 3ad2ant3 1084 |
. . . 4
|
| 57 | 53, 56 | oveq12d 6668 |
. . 3
|
| 58 | nqerid 9755 |
. . . . . 6
| |
| 59 | 58 | eqcomd 2628 |
. . . . 5
|
| 60 | 59 | 3ad2ant1 1082 |
. . . 4
|
| 61 | mulpqnq 9763 |
. . . . 5
| |
| 62 | 61 | 3adant1 1079 |
. . . 4
|
| 63 | 60, 62 | oveq12d 6668 |
. . 3
|
| 64 | 51, 57, 63 | 3eqtr4d 2666 |
. 2
|
| 65 | mulnqf 9771 |
. . . 4
| |
| 66 | 65 | fdmi 6052 |
. . 3
|
| 67 | 0nnq 9746 |
. . 3
| |
| 68 | 66, 67 | ndmovass 6822 |
. 2
|
| 69 | 64, 68 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ni 9694 df-mi 9696 df-lti 9697 df-mpq 9731 df-enq 9733 df-nq 9734 df-erq 9735 df-mq 9737 df-1nq 9738 |
| This theorem is referenced by: recmulnq 9786 halfnq 9798 ltrnq 9801 addclprlem2 9839 mulclprlem 9841 mulasspr 9846 1idpr 9851 prlem934 9855 prlem936 9869 reclem3pr 9871 |
| Copyright terms: Public domain | W3C validator |