MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulexpz Structured version   Visualization version   Unicode version

Theorem mulexpz 12900
Description: Integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
mulexpz  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  N  e.  ZZ )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )

Proof of Theorem mulexpz
StepHypRef Expression
1 elznn0nn 11391 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 simpl 473 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  e.  CC )
3 simpl 473 . . . . . 6  |-  ( ( B  e.  CC  /\  B  =/=  0 )  ->  B  e.  CC )
42, 3anim12i 590 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  -> 
( A  e.  CC  /\  B  e.  CC ) )
5 mulexp 12899 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
653expa 1265 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN0 )  ->  ( ( A  x.  B ) ^ N )  =  ( ( A ^ N
)  x.  ( B ^ N ) ) )
74, 6sylan 488 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  N  e.  NN0 )  -> 
( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
8 simplll 798 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
9 simplrl 800 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  B  e.  CC )
108, 9mulcld 10060 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A  x.  B )  e.  CC )
11 recn 10026 . . . . . . 7  |-  ( N  e.  RR  ->  N  e.  CC )
1211ad2antrl 764 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
13 nnnn0 11299 . . . . . . 7  |-  ( -u N  e.  NN  ->  -u N  e.  NN0 )
1413ad2antll 765 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
15 expneg2 12869 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
1610, 12, 14, 15syl3anc 1326 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ N )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
17 expneg2 12869 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
188, 12, 14, 17syl3anc 1326 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
19 expneg2 12869 . . . . . . . 8  |-  ( ( B  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  ( B ^ N )  =  ( 1  /  ( B ^ -u N ) ) )
209, 12, 14, 19syl3anc 1326 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ N )  =  ( 1  /  ( B ^ -u N ) ) )
2118, 20oveq12d 6668 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ N
)  x.  ( B ^ N ) )  =  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) ) )
22 mulexp 12899 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  -u N  e.  NN0 )  ->  (
( A  x.  B
) ^ -u N
)  =  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) )
238, 9, 14, 22syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ -u N
)  =  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) )
2423oveq2d 6666 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( 1  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
25 1t1e1 11175 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
2625oveq1i 6660 . . . . . . . 8  |-  ( ( 1  x.  1 )  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) )  =  ( 1  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) )
2724, 26syl6eqr 2674 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
28 expcl 12878 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ -u N
)  e.  CC )
298, 14, 28syl2anc 693 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N )  e.  CC )
30 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  =/=  0 )
31 nnz 11399 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  -u N  e.  ZZ )
3231ad2antll 765 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
33 expne0i 12892 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  -u N  e.  ZZ )  ->  ( A ^ -u N )  =/=  0 )
348, 30, 32, 33syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N )  =/=  0 )
35 expcl 12878 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  -u N  e.  NN0 )  ->  ( B ^ -u N
)  e.  CC )
369, 14, 35syl2anc 693 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ -u N )  e.  CC )
37 simplrr 801 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  B  =/=  0 )
38 expne0i 12892 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  -u N  e.  ZZ )  ->  ( B ^ -u N )  =/=  0 )
399, 37, 32, 38syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ -u N )  =/=  0 )
40 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
41 divmuldiv 10725 . . . . . . . . 9  |-  ( ( ( 1  e.  CC  /\  1  e.  CC )  /\  ( ( ( A ^ -u N
)  e.  CC  /\  ( A ^ -u N
)  =/=  0 )  /\  ( ( B ^ -u N )  e.  CC  /\  ( B ^ -u N )  =/=  0 ) ) )  ->  ( (
1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
4240, 40, 41mpanl12 718 . . . . . . . 8  |-  ( ( ( ( A ^ -u N )  e.  CC  /\  ( A ^ -u N
)  =/=  0 )  /\  ( ( B ^ -u N )  e.  CC  /\  ( B ^ -u N )  =/=  0 ) )  ->  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) ) )
4329, 34, 36, 39, 42syl22anc 1327 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
4427, 43eqtr4d 2659 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) ) )
4521, 44eqtr4d 2659 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ N
)  x.  ( B ^ N ) )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
4616, 45eqtr4d 2659 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
477, 46jaodan 826 . . 3  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )  -> 
( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
481, 47sylan2b 492 . 2  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  N  e.  ZZ )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
49483impa 1259 1  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  N  e.  ZZ )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  exprec  12901  knoppndvlem14  32516  knoppndvlem17  32519
  Copyright terms: Public domain W3C validator